
'—" mmm^mi ^mm*^mimm^*m.

A /"

U.S. DEPARTMErfT OF COMMERCE
National Technical Information Service

AD-A016 668

STRUCTURED PROGRAMMING SERIES.

VOLUME XV. VALIDATION AND VtPIFICATION STUDY

IBM FEDERAL SYSTEMS CENTER

PREPARED FOR

ROME AIR DEVELOPMENT CENTER

ARMY COMPUTER SYSTEMS COMMAND

22 MAY 1975

V.

■ .[■■II 11 MB

F
*^*m*m*m9m*mmm*m^^**'" < "' < «»«(■»»IPPIW"!»""»"»^-^^—■. mim ia - iiu.i-iwmaammmi^am^m^^mm L«I win i ™» -— 'W^OTWVII II ,

ft

RADC-TR-74-300, VOLUME XS
U

314164 MAY 75

•i '
inn

III..

I|i||lllill! [iiini

Imi'HHiilllin
Uli.

II

iiini

Ihn

•

00
CO
«o
«£»

©

VALIDATION
&

VERIFICATION STUDY
nBamrncMR

APPROVED FOR PUBLIC RELEASE.
DISTRIBUTION UNLIMITED

u.E. lira
comPüM sysTöiiE
m mm,

romiOD
u.E. m FORK

m fORCf EHEllE COIHIlflD
m m mmm mm
mm MR mi mi, P.E.

IBKB SUBJKT TO (HAKGf
t*produftd by

NATIONAL TECHNICAL
INFORMATION SERVICE

US C>«p.rlm,ni „(,omm,re#

Spnnglitld. VA JJIJI

H^HM^M^
'^•1 ^MMJMMMUl'itW »Mi inDtU

mm^mm,*—
—■ I.

"' "■« WB*W
■—n "'—"■ ——~——

/

Thl« raport ha« b««n r«vl«wd iy th« Office of Informtlon, UDC, and
approved for release to the National Technical Inforaation Service («18).
At Mill, it will be available to the general public, including foreign
aaticaa.

Voluae« I, II, Til, IV, V, VI, VII, Addendum to Volume VII, VIII, IX,
X, H, and ilV of the Structured Prograaming Series are the only
voluaaa which have been pub-ished up to this time.

hOTE:

Copies of these and subsequent volumes of the Structured Programming
Series «ay be obtained from the

National Technical Infonation Service (NTIS)
528S Port Royal Road
Springfield, VA 22161

by referencing «ADC-TR-74-300.

I
Do not return this copy.
Retain or destroy.

nee

MM Urn-. mm - J

miimi ■ w —-^———' — i—i-.i—-»- - ^PP^T—^-T-——~—'
^—•—■ —

UNCLASSIFItiD
StCuniTV CLASSIFICATION OF THIS PACE (Wbmn Omit tnltttä)

REPORT DOCUMENTATION PAGE
I REPORT NUME1ER

RADC-TR-7A-300, Volumf XV

2. OOVT ACCESSION NO

4. TITLE ^and 5u6llll«;

STRUCTURED PROGRAMMING SERIES (Volume XV)
Validation and Verification Study

7. AUTMORf«;

Ronald L. Smith

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBErl

5 TYPE OF REPORT « PERIOD COVERED

Final Technical Report
S PERFORMING ORG REPORT >,UMBER

N/A
8 CONTRACT OF GRANT NUMBERf.)

S PERFORMING ORGANIZATION NAME AND ADDRESS

IBM Corporation, Federal Systems Center
18100 Frederick Pike
Gaithersburg, Maryland 20760

II, CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISIS)
Griffiss Air Force Base, New York 13441

Ti MONITORING AGENCY NAME a AOORESSCI'<<"'«rMil (roin Confrollln« Oltlct)

Same

F30602-74-C-0186

10. PROGRAM ELEMENT. PROJECT, TASK
AREA * WORK UNIT NUMBERS

A00H
55500803

12 REPORT DATE

22 May 1975
IS. NUMBER OF PAGES

89
IS. SECURI1 Y CLASS, (ol Ihlk rmporl)

UNCLASSIFIED
15« DECLASSIFICATION DOWNGRADING

.SCHEDULE
N/A

IS DISTRIBUTION STATEMENT (ol Ihlt Rtperl)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (ol Iho mbtlrmcl mnloiod In at. ck 10. II dllltronl Irom Roporl)

Same

l|. SUPPLEMENTARY NOTES

RADC Project Engineer:
Donald L. Mark (ISIS)
AC 315 33Ü-A875

USACSC Project Officer:
Captain John C. Carrow
AC 703 66A-4235

1». KEY WORDS (Conllnu* on torottm »Id» II n»c»ii«ry «n«* Idtnllly by block rnmbor)

Verification
Validation
Inspection
Testing

Certify
Prove

20 ABSTRACT (■Conllnu» on nimm tldo II ntcofmry and Idonllly by block numbtr)

This volume reports on techniques currently used for verifying and
validating computer programs and software systems. It also contains an
analysis of the effect that structured programming technology will have on
these techniques. This analysis addressed all phases of software
development - definition, design, implementation, and evaluation.

DO , F0"M 1473 AN 71 WJ EDITION OF I NOV 6S IS OBSOLETE * UNCLASSIFIED
/ SECUf • 1 CLASSIFICATION OF THIS PAGE 'Whmn Dmlm Enl»r»d)

■MMMM '•-- —

I wumm ■■ i ■" «I ii ^*^^m*mimmmm^^^~~-~*^^m~m^^m~mm

STRUCTURED PROGRAMMING SERIES

VOLUME XV

Validation and Verification Study

Final Report

Ronald L. Smith

international Business Machines Corporation
Federal Systems Center
18100 Frederick Pike

Galthersburg, Maryland 20760

May 22, 1975

Approved for public release;
distribution unlimited.

Produced Under
U.S. Air Force (RADC)

Contract F30602-74-C-0186
Co-sponsored by USACSC

la

«^^MMHMia^BaaMM - - - ■

• ■• ' I '"• !'"• ■ "WPWP^WW—•

FOREWORD

This report was produced in response to Task 4.1.15 in the Statement of Work
for the Structured Progranmlng System under contract number F30602-74-C-0186.
The report Is delivered to RADC in accordance with Item AOOH of the Contract

Data Requirements List.

The report was prepared by Ronald L. Smith with significant contributions
by Ms. M. C. Blakebrough and Mr. J J. Naughton, and constructive criticism
by Mr. D. W. Daetwyler, Mr. T. M. Kraly, Mr. J. W. Patterson, Mr. N. Tinanoff

and Mr. J. T. Trimble.

Contributions were also made by the following RADC personnel: Mr. F. J.
Tomaini, Mr. R. Nelson, and Mr. D. L. Mark, Project Engineer; and the following
USACSC personnel: Mr. G. Felled, Mr. H. E. Kody, au* Captain J. C. Carrow,

Project Officer.

This report is one of a set called the Structured Programming Series. The
objective of this set is to provide information, guidelines and standards
as appropriate to facilitate the adoption and use of structured programming
technology in the acquisition and development of software. The Structured

Programming Series consists of the following volumes:

Programming Language Standards
Precompiler Specifications

- Precompiler Program Documentation
Data Structuring Study
Programming Support Library Functional Requirements
Programming Support Library Program Specifications
Documentation Standards
Program Design Study
Management Data Collection and Reporting
Chief Programmer Team Operations Description
Estimating Software Project Resource Requirements

Training Materials
Final Report
Software Tool Impact
Validation and Verification Study

Volume I
Volume II
Volume III
Volume IV
Volume V
Volume VI
Volume VII
Volume VIII
Volume IX
Volume X
Volume XI
Volume XII
Volume XIII
Volume XIV
Volume

DVED:

XV

y
GEORGE M. SOKOL
Deputy for Engineering
US Arny Computer Systems Command

CARLO P. CROCETTI
Chief, Plans Office
Rome Air Development Center

ii

■MM

11 ■■■ •ml " •"

mmm

I

) ABSTRACT

This volume reports on techniques currently used for verifying and validating
computer programs and software systems. It also contains an annlysis o^ the
effect that structured programming technology will have on these techniques.
This analysis addresses all phases of software development - definition,
design, implementation, and evaluation. There are two major conclusions of
the study. First, a majority of software projects rely almost entirely on
computer based testing as the method of verifying and validating software.
Second, structured programming technology has facilitated manual based veri-
fication techniques such as design verification and code verification, and
thus, increased usage of these techniques should be encouraged.

ill

J

P1"» I 1 1 I lil 1 ■
- •— "■ III 1 "' I I IBM I ii i i m —-^-mrn

EVALUATION

lue objective of this effort Is to design and develop a detailed set of
guidelines for a Structured P ogrammlng System (SPS) that will be used to
create a complete environment for the acquisition and developmei t of
software. Contract F30602-74-C-0186 will serve to transfer IBM's present
technology In Structured Programming (SP), Top Down Development, Chief
Programner Teams (CPT), and Structured Programming Libraries (SPL) to the
Air Force for further development. The technology transfer will be
realized by studying and refining specific software production task areas.

This report, which Is one of a set called the Structured Programmirg Series,
describes the Impact of structured programming technology on validation

and verification of software.

Structured progranmlng (SP) technology is providing the opportunity for
Improved techniques for determining correctness at both the program
(verification) and system (validation) level. Some classical techniques,
such cs the use of driver to exercise code, are becoming obsolete while
others, such as code reading and desk checking, are becoming more important.
Initially, all elements of the SP technology were considered on all types
of software development. The primary emphasis, however, was expected to
be on the impact of top down structured programming on large scale
development projects.

A survey of the technical literature in the area of software verification
and validation was performed. IBM Federal System Division experience in
program verification and validation on selected structured programming
projects was analyzed. Finally, technical judgments regarding the impact
of structured programming technology on the verification and validation

of computer programs were made.

DONALD L. MARK
Project Engineer
Software Sciences Section

iv

H I I IIIMI __ _____ j

^w ' ■ p ■ ■iiimniiiwia*

TABLE OF CONTENTS

Section

1
1.1
x.2
1.3
1.4

2
2.1
2.2
2.3

3
3.1
3.2
3.3

A
4.1
4.2
4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

5

5.1
5.2
5.3

Appendix A

Appendix B

Appendix C

Appendix D

INTROn'CTION
Background
Report Organization
Conclusions
Reconmendatlons

DEFINITION FRAMEWORK FOR VERIFICATION AND VALIDATION

Terminology History
Definitional Framework
Related Testing Activities

VERIFICATION AND VALIDATION TECHNIQUES SURVEY
Introduction
Verification Techniques
Validation Techniques

STRUCTURED PROGRAMMING PROJECT SURVEY
Introduction
Mitsubishi Bank New System - Japan
Ground Support Simulation Computer for ASTP -

Houston, Texas
Advanced Control System (ACS) - Houston, Texas
Earth Resources Interactive Processing System

(ERIPS) - Houston, Texas
FAA National Airspace System Support Software
(NASCOR, ACEUTE) - Atlantic City, New Jersey
Resource Monitoring System Force Status -
Rosslyn, Virginia
Multi-Optical Sensor Simulation (MOSS) - West-

lake, California
Test Control Computer Suppoi.*: Software
(TCCSS) - Galthersburg, Maryland
TRIDENT AN/BQQ-6 Sonar Software - Manassas,
Virginia
Energy Management System (EMS) - Houston, Texas

STRUCTURED PROGRAMMING TECHNOLOGY (SPT) IMPACT
ON VERIFICATION AND VALIDATION

Introduction
Techniques
SPT Impact on Techniques Described In Section 3

SOFTWARE DEVELOPMENT CYCLE

STRUCTURED PROGRAMMING TECHNOLOGY FLNDAMENTALS

REFERENCES

BIBLIOGRAPHY

Page

1-1
1-1
1-1
1-2
1-3

2-1
2-1
2-1
2-3

3-1
3-1
3-4
3-17

4-1
4-1
4-1
4-3

4-5
4-6

4-8

4-9

4-11

4-13

4-14

4-16

5-1

5-1
5-1
5-9

A-l

B-l

C-l

D-l

■M __

IWOTPMPMNIfWIVBipilMPiaVn^HWHIl"-^!^"! ' ISP.' ' '' i ■■■■■i. lawifiii n ■• « imi m

ILLÜSTRATKÄS

Figur« Page

2-1 Fraiwwork for Verification and Validation 2-2

3-1 Use or Potential Use of Verification and 3-2
Validation Techniques

3-2 Advanced Execution Analysis Approach 3-11

3-3 Example of Network es Path Analysis 3-13

3-4 Software Confidence Calculations 3-16

vl

 J

wm^mmm i iimii>nv*^>«i i v ii i wifm^BH^mmf^m 11 "' »»^^«1^1»^^^«

Section 1

INTRODUCTION

1.1 BACKGROUND

Verification and valld«tlon of digital conq)uter programs ha« baan a difficult
and coatly activity of the software development process. Structured program-
ming has been ascribed an advantage In verification and validation by Its

early proponer.tü.

In recognition of these factors, Teak 4.1.15 was Included In the Statement
of Work for contract number F30602-7A-C-0186. The objective of this task Is
to determine what verification and validation techniques are currently being
used for determining program and system correctness and how these techniques

are impacted by structured programming technology.

In pursuit of this objective, the following subtasks were performed:

o Review of available literature related to verification .•nxd valldatior

techniques of software.

o Review of selected IBM Federal Systems Division (FSD) projects which
use structured programming technology to determine experience with

software verification and validation.

o Identification and examination of existing verification and valida-

tion techniques.

o Determination of the potential Impact of structured programming
technology on the traditional techniques used to verify and validate

software.

This report presents the results of these subtasks.

1.2 REPORT ORGANIZATION

Section 1 contains background information, conclusions and reconmendations of

the study.

Section 2 contains the definitional framework for verification and validation

and brief discussions on related testing activities.

1-1

KM« - -

1 i ■■ ■ ' • i ii m*^nmm*m^m^i^^m^mmmi m ■ tm\^m^9mwmmmmm

Section 3 describes some of the verification and validation techniques cur-
rently used on software development projects and those with future potential.
The utility, advantages, and disadvantages of each technique are also described.

Section A contains the results of the survey of software development projects
(current or recently completed) and discussions on the verification and vali-
dation techniques used on each project.

Section 5 describes two verification techniques that are usually associated
with structured programming technology. This section also discusses how
structured programming technology affects the verification and validation
techniques described In Section 3.

Appendix A describes the software development cycle.

Appendix B contains a discussion and definition of structured programming
technology.

Appendix C contains the references used In this report.

Appendix D contains the bibliography.

1.3 CONCLUSIONS

Significant findings of the study are:

a. A majority of software development projects rely almost entirely on
computer based testing as the method of verifying and validating
software. However, there is no widely accepted technique for veri-
fying and validating software.

b. Structured Programming Technology (SPT) facilitates verification and
validation of software, but at this time insufficient data is avail-
able to support specific approaches using the techniques described
In this report.

c. SPT provides the top down ?8tlng technique resulting from using top
down programming (TDP). This verification technique assists in pro-
ducing more reliable software at a lower cost.

d. SPT has a direct positive affect on twc manual based techniques,
I.e., design verification and code verification; and one computer
based technique, drivers. The SPT impact on the manual based tech-
niques facilitates the early detection and removal of errors and
thus, reduces the cost of developing and maintaining software. SPT
also reducet» the number of drivers required which results in a cost
savings of software development.

e. SPT has an indlirect positive affect on four other verification and
validation techniques. They are execution analysis, automated net-
work and path analysis, functional testing, and design simulation.

1-2

^M

"•-' "" -'- m^mmmm*r~r^^mmm i i" > i n mf^mm^g^m^m "."• ' '■ m^wmmwm ii ■■iinpna^m^^mi

I
; 1.4 RECOMMENDATIONS

The following recommendations will achieve a significant improvement in the
production and maintenance of software even though the SPT affect on verifi-
cation and validation cannot be quantified:

a. Introduce the concepts of top down programming on all future new
software procurements employing the associated top down testing
technique to reduce the cost and Increase the reliability of soft-
ware. Top down testing should be used as the major verification
technique during the computer based testing of a software development

project.

b. Encourage the use of manual based verification techniques which are
fecllltated by using SPT. Techniques such as design verification
and code verification should be used to find errors early in the
software development process.

'

i

1-3

__MHaaM

m i •""• *"~ ■<!»HP ■' '•"-'■■ ■ ipii^i lainwn ' ""■ -

Section 2

DEFINITION FRAMEWORK FOR VERIFICATION AND VALIDATION

2.: TERMINOLOGY ATSTORY

The terms verification and validation along with several related terms are
used to refer to nhe error finding and evaluation activities of software
development. Terns used include verify, prove, validate, certify, debug,
test, and inspect. A review of the literature demonstrated the semantic
difficulty in this area. During the early period of software development,
the two terms debugging and testing were most frequently used. Fred Gruen-
berger [1] states that these two terms were used synonymously until 1957 when
program testing was distinguished from debugging by Charles Baker of the RAND
Corporation. The distinction made was that debugging starts with known errors
and attempts corrections, testing measures how well the specifications are met.
During the period from 1957 to present, many writers continued to confuse
the terms testing and debugging. In the early sixties, the terms validate and
verify started appearing in the literature, and by the seventies, other terms
such as certify, prove, and inspect began to appear in the literature.

This section attempts to eliminate some of the semantic ambiguity by defining
a testing framework that will be used throughout this report. Using this
framework, several testing activities (i.e., correctness proof, certification,
and performance test) that are outside the scope of this study will also be

briefly addressed.

2.2 DEFINITIONAL FRAMEWORK

The framework defined here and shown in Figure 2-1 is similar to the one
defined by William Hetzel [2]. This figure shows the testing activity. The
specification set or assertions which describe the software behavior «re
shown as an input to all of the testing activities. Five major test af.tivities
are defined in the process boxes. Inputs to a process box are suggestive of
the information used by the process in the box while outputs on the right
suggest the information obtained. Debugging is not included in the definition
of testing as defined earlier. This study concentrated on processes 1 and 2
which are discussed in more detail. The definitions for these two processes
are presented below. Manual and computer based techniques described in these

two processes are described in Section 3.

2.2.1 Verification Definition

Verification is the process of determining whether the results of executing
the software product in a test environment agree with the specifications.

2-1

4<

kjmmmm
■ J

I' "■"'l 'I ■ • '**' t 'mm in

I

O

«S.I

-J.EU/
Cc

 C

o
rr

ec
tn

es
s

G
.v

en
 E

xt
er

n
al

ro

n
m

en
t

L
o

g

in
 a

E

nv

I
CO
UJ

rr
O-

O z
I-

Ä

So
c ^ ♦-
tt 'O c

* 10 c

ill III -i 5 €

8|
III 111
1*1 e ot
uj U UJ

«i

>

Ä

t
z

TT ^Y

o
- 3 01 HI IIP
IJ

I 2 Z a.

IB

"5
>

OJ >
O

CO

A

e
41 0

1U
O
c
ID

E

01 a.

A

o
'> E

SI In« : .9 CD 5 JJ
o o ■£ O •

t ^ ^ £
ill'
< i/j fo "o j

£ ^ 5 « " o J £
C 10 a CD
.9 .y «A c

< 10 m W

I
CM

2-2

 -J^- _»— J

*mmm ■ " "•■-"- ^mmmimm^mmm^^mm ' " -

Verification is usually only concerned with the eoftwere'e logical correct-
ness (i.e., satisfying the functional requirements) and may be a manual or a
computer based process (i.e., testing software by executing it on s computer).

2.2.2 Validation Dsfinition

Validation is the process of determining whether executing the system (i.e.,
sofrware, hardware, user procedures, personnel) in a user environment causes
any operational difficulties. Validation is more difficult than the verifi-
cation process sir.ce it involves questions of the completeness of the specifi-
cation and enviiormeut information. There are both manual and computer based

validation techniques.

2.3 RELATED TESTING ACTIVITIES

i 2.3.1 Correctness Proof

Correctress proof of a computer program is most often defined as the technique
of preying mathematically that a given program is consistent with e given set
of srecifications. This process can be accomplished by manual methods or by
program verifiers requiring manual intervention. The latter concept evolved
from a dissertation by Jim C. King at Carnegie-Mellon University in September

1969 that was later presented in a book [31.

Program verifiers make use of fcrmal specifications of the progrsm's intent
that are vritten in a formal assertion language. The correctness proof process
then consists in analyzing the actions carried out by the prograt. and checking,
usually by proving mathematical theorems, that the output assertions will be
satisfied whenever the input data meets the conditions specified by the input
assertions. Several research papers have been written ou program verifiers
and a few of these are listed under References. The most prolific writers
on this subject are: Donald I. Good [4, 5], Ralph London [5], Bernard Elspas

[6], and Larry Robinson [7].

Significant progress has been made in this area since 1970, but most authors
agree that program verifiers are a long way from being able to handle practi-
cal programs of substantial size written in convential programning languages.
Boyer, Elspas, and Levitt [6] list five main obstacles to formally verifying

realistic programs. They are:

a. The necessity (in aost systems) for inventing intermediate asser-
tions (e.g., inductive assertions, Ployd predicates), and the dif-
ficulty experienced by the programmer-verifier in coming up with

these assertions.

b. The difficulty in framing input and output assertions that adequately

express the program's intent.

2-3

■MK

*«««a(iiRipni«pniiPBi«iiv>-vw<iiiw<iiti ■ ■ 1 ! ' '■" Ill «I Ml <««p>

1

C.

d.

e.

The lack of sufficiently rich aseertion languages in which to
express these input/output assertions and intermediate assertions
for programs covering a wide variety of data types and functional

primitives.

Technical limitations in present-day theorem-proving techniques such

as inadequate speed and large storage requirements.

An apparent need for considerable programmer intervention in the

theorem-proving process.

2.3.2 Certification

Certification as discussed by Hetzel [2] carries the connotation of an author-
itative endorsement and seems to imply testifying in writing that the Program
is of a certain standard or quality. Certification uflually implies the exist-
ence of an independent quality control group. Reifer [8] states t.^t certifi-
cation extends the process of verification and validation to an operational
environment and involves acceptance testing of the overall system. Keirstead
and Parker [9] define basic requirements of a software system certification.

They are:

s. Develop means for determining the adequacy of software specifications.

j. Develop methods for cslculating a reliability measure for a component

software module.

c. Develop procedures for combining component measures to derive a

measure of software system reliability.

Certification and several other areas related to certification were not the
primary emphasis of the study and are not further discussed in this report.
The related areas and references contained in the bibliography can be summarized
as Software Reliability [10. 11, 12, 13, 14], Software Complexity [11, 15 ,
and Quality Assurance [16, 17]. For a comprehensive bibliography on certifi-
cation and the other related activities, reference the bibliography in the
book, Propram Test Methods, edited by William C. Hetzel [18].

2.3.3 Performance Testing

Performance testing of software is defined as the evaluation of nonlogical
properties (i.e., computer run time, resource utilization) of a software
system. Performance is measured in terms of the amount of resources required

by a software system to produce a result.

The literature for the most psrt does not address performance testing inde-
pendently from functional testing. Hetzel [2] and Marten and Telchroew 19
do address performance testing as an Independent testing activity. The latter
paper describes how problem statement languages can assist in the performance

testing of software.

2-4

7<

MM*

■ ■I OTIIBJW.WI 1 ■ <^iiuiMiyiji,iU<iii«u iw^""""»»—"■« !mm**m*mmimi*''W^^:*mm ' ' " " ■"»»'immMii 11 m m ui i -vanrnp^t^nnapf^i

Th« v«rlfleitlon «nd validation techniques (discussed In Sections 3, 4, end
5) ere prlmerlly oriented toward functlonel testing; however, e few ot these
techniques ere Indlceted es also being suiteble for performance testing.

2-5

8-

-- ■ i - - - - J

wm^

\

wmmm » iii*mui

Section 3

VERIFICATION AND VALIDATIOK TECHNIQUES SURVEY

^

3.1 INTRODUCTION

One of the meet difficult, time consuming aspects of software development
Is comprehensive verification and vallda-.lon of the system's capability to
perform Intended functions. The basic purpose of verifying and validating Is
to ensure that a software product will perform Its Intended function at the

time those functions are needed by the user.

Most large computer software systems are never completely verified and vali-
dated. For such a claim to be valid would require the successful execution
of an astronomical number of tests designed to test every logical and Illogi-
cal combination of data, or timing environment, through every logical data
path in the system. Such a degree of tebting is unually neither feasible nor
practical. Therefore, the practical approach usually taken is to ensure that
every logical path is tested with combinations of data which include the
nominal and any reasonably expected deviations from the nominal.

Mcst of the verification and validation techniques, described in thfl litera-
ture and used by the software projects surveyed during this study, sddress
thio practical approach with computer based testing and not manual based
testing. Computer based testing and manual based testing are discussed in

subsections 3.1.1 and 3.1.2.

The classification of the techniques as either a verification technique or a
validation technique was a technical judgement and was not necessarily indi-

cated in the literature.

Sectio.. J oes not describe all the techniques but does describe (in order of
decreasing awge) the traditional techniques which have been used most often
followi by those judged to have near term practical application value. An
example of a validation technique not included in this report is the DoD COBOL
compiler validation system described by Baird [20]. This technique, while
extremely useful in validating COBOL compilers, is limited in the validation
of other software systems. Two verification techniques not described in
Section 3 usually associated with structured programning technology are des-
cribe! in Section 5. An overview of the verification and validation techni-
ques «nd their use or potential use during the various phases of the software

development cycle* is depicted in Figure 3-1.

* The software development cycle is discussed tn Appendix A.

3-1

iM_

"■"■I I' 11^1 I 11 n mmmmmmmmim 11lfli*rr*mf^mtmmmmi^^*mmm*mm*iW**'**li* ^■«■««^^^^««»«••ipiMMir'I

Verification
and

Validation Techniques

Software Development Phases

Definition Design Implementation Evaluation

Drivers X

Test Data Bases X X

Design Verification X X

Execution Analysis X X

Automated Network or
Path Analysis X

Statistical Prediction X X X

Functional Testing X X

Design Simulation X X X

Design Validation X X

Matrix Analysis and
Problem Statement
Languages X X

Top Down Programming X

Code Verification X

Figure 3-1. Use or Potential Lse of Verification and Validation Techniques

3-2
10

■

kW " • "■'■■l ll1 ' LHum IN luiii tmuwmm^m^m^mm t-imii HI nmmi i «iPUli > 11 n

3.1.1 Computer Based Testing

Computer based testing can be broadly divided Into two types: Informal testing
and formal testing. The basic difference between these types originates ::rcm
the documentation requirements. Informal testing utilizes Internal test
documentation control and procedures; formal testing Is conducted in accordance

with customer approved test plans.

Informal testing usually is designed to be development group testing and
requires no formal customer approval. Informal testing usually begins when
the first program unit is coded and continues throughout the system implemen-
tation phase of software development (refer to Appendix A for the description
of the software development cycle). Terms used in the literature to describe

this testing Include:

o Unit Testing

o Subsystem Testing

o Integration Testing

o Component Testing

o Development Testing.

Formal testing is the testing performed in accordance with customer-approved
test plans. This type of testing verifies that the software system is oper-
ating according to the requirements of the development specifications. Formal
testing is usually performed during the system evaluation phase of software
development. Terms used in the literature to describe this testing include:

o System Integration Testing

o Prototype Testing

o System Testing

o Acceptance Testing.

3.1.2 Manual Based Testing

Manual based testing is usually directed at evaluating both the design and
the product (i.e., programs and documentation). The design is usually eval-
uated from documents containing Information such as functional requiretents,
system specifications, and program specifications. The product evaluation
usually involves review of the computer programs and the documentation des-

cribing the programs or system.

3-3

 i - _—

wmmmmwmmmtmtmmmmm^mmmmmmmmmi^mmwm^'^^^^mmmmmmmwmr^^m^mmmm'^^^^^mmmmmf »■ ■ ■■ p «a «^

3.2 VERIFICATION TECHNIQUES

3.2.1 Drivers

3.2.1.1 Description

A driver program Is superfluous (throw-away) code needed to perform the unit
testing and lower levels of Integration testing In a bottom up software develop-
ment effort. Frequently. :est drivers were us- to test the entire software

syste^ The literature Indicates that most traditional 8oft«a" J;^1^*1^
projects used this technique In one form or another. Several authors [21, 22.
K 24 25] describe driver programs that ware developed for the automatic
■eieraaon of test cases and for driving other programs. These general pur-
Jose driven programs were developed In an atcempt to Increase programmer pro-

ductlvlty and quality of testing.

3.2.1.2 Use

Drivers are a computer based Informal testing technique and are used In con-
ation ^th oZr techniques almost exclusively during the system mpl^en-

tatlon phase of a software development project. This appears to *•*••"«
frequency used verification technique. It was used on seven of the ten

programming projects described in Section 4.

3.2.1.3 Advantages

The major advantages of this technique are:

a. The testing of critical components can be emphasized.

b The I/O functions are most often required early in the software
development and theae can easily be handled with driver programs.

3.2.1.4 Disadvantages

The major disadvantages of this technique are:

.. Cost of developing the drivers which in most cases are discarded aid
not delivered to the customer.

b. Errors frequently exist in drivers which further impede the testing

process.

c Drivers are usually written by the same individuals who write the
component being tested. Thus, they are likely to contain the same
invalid assumptions about the component interface.

it

MB J

■ ■ ■ ■ 1 ■ ■ "■■I-" «■'""
1

3.2.2 Test Dfta Bases

,

3.2.2.1 Description

A test dsts base is s collection of dst» stored on s computer peripheral
d-vice (e.g., tspe, disk) that closely matches the "real" data bass. Ideally,
a test dsts base should be identical to s real dsts base but usually it only
provides representative dsts. There are mary test data generator programs
available, and some of these are tabulated in [25]. These programs generete
tap« or disk files with random or sequentisl or user specified dsts values.

3.2.2.2 Use

The literature indicates the frequent us a of this technique for the develop-
ment of large software systems. Test d/.ta bases were used on tha New York
Times Project as described in [26], on th'i Fcdersl Aviation Adirlntstration
National Air Space System ss described in [27], and on nine of the ten pro-
gramming projects described in Sectioa 4. This technique is usually used in
conjunction with one or more of the other verification techniques. This
testing technique is computer based snd informal, used almost exclusively
during the system implementation phase of a software development project.

3.2.2.3 Advantcses

The major advantages of this technique are:

a. The real data base Is protected.

b. The testing can proceed raster with less confusion.

3.2.2.4 Disadvantages

The major disadvantages of this technique are:

a. The high cost of creating a test data base.

b. Tet't data bases do not always contain adequate data types or a suf-

ficient volume of data. fcent \

jn^ri 3.2.3 Design \mrification

3.2.3.1 Description

This technique is defined as the examination or inspection of s software
specification for the purpose of finding design errors. Other terms used in
the literature to describe this technique or variations of this technique

3-5

.1 o- ^

_-» _i

WPi(I. IMII.pt.1 iiuji.iMiipmi.uii« MI «II mil i\m^mm a

'

include design review, design inspection, specification testing, paper test-
ing walk-through, structured walk-through, and preliminary design review.
Two*approaches to the design verification technique are presented below.

Buckley {28] describes a Preliadnairy Design Review (FDR). He states that the
purpose of each PDR was to exanine the preliminary design of a particular
module of software. Each PDR was to be preceded with extensive technical
notes including flowcharts provided by the contractor. After an in-house
review, the customer and the contractor were to meet, discuss the approach on
the specific software module in detail, ensure this approach was consistent
with the contract, and Jointly resolve any discrepancies.

Fagan [29] describes design inspections. His I, design inspection is sum-
marized below under the three headings: "Inspection Tesm," "Outline of the
Inspection Procedure," and "Examples of What to Examine When Looking for Erro«.

a. Inspection Team

1. Moderator-The key person in a successful inspection is the
moderator. He need not be a technical expert, but he must
manage the inspection team and provide leadership. He must
use personal sensitivity, tact, and drive in balanced measures.
His use of the strengths of team members should produce a
synergistic effect larger than their number. He is The Coach.

2. Designer-The programmer responsible for producing the program

design.

3. Coder/Implementor-The programmer responsible for coding the

design.

4. Tester-The progranmer responsible for writing and/or execut-
ing test cases or otherwise testing the product of the designer

and coder.

In the event that the coder is also the designer, he will function
in the designer role, and another programmer from some related or

similar program will perform the role of coder.

In the event that the same person will design, code, and test the
product code, the coder role should be filled as described above.
Another programmer, preferably with testing experience, should fill

the role of tester.

b. Outline cf the Inspection Procedure

1. Overview-Documentation of the design is distributed to all
inspection participants. The designer describes the overall
area being addressed, and then the specific area he has de-
signed in detail such as logic, paths, and dependencies. The
entire inspection team participates in the overview.

3-6
4<

MI M-M». mm

^mim.mmi rw^^mrn^mrnm^m^mim rrw im>m mmmitnm mi w mi n^^^imim PPHWPP^WW»^^"»-™»»' ^mmmm

■4

> 2. PrepararIon-Participants, using the design documentation, try
to understand the design, its intent, and logic.

3. Inspection-The coder describes how he will implement the design.
Every piece of logic is covered at least once and every bra-ich
is taken at least once. The entire team participates in this
phase.

A. Followup-It is imperative that every issue, concern, and error
be entirely resolved at this level. Errors can be 10 to 100
times more expensive to fix if found later in the process
(programmer time only, machine time not Included).

c. Examples of What to Examine When Locking for Errors

1. Missing

(a)
(b)

(c)
(d)

(e)

(f)
(g)
(h)

(i)
(j)
(k)

(1)

(m)

(n)
(o)

Are all constants defined?
Are all unique values explicitly tested on input para-
meters?
Are values stored after they are calculated?
Are all defaults checked explicitly tested on input para-
meters?
If character strings are created, are they complete?
Are all delimiters shown?
If a keyword has many unique values, are they all checked?
If a queue is being manipulated, can the execution be
interrupted; if so, is queue protected by a locking struc-
ture?
Can queue be destroyed over an Interrupt?
Are registers being restored on exits?
Are all operands tested in macro?
Are all keyword related parameters tested in service
routines?
Are queues being held in isolation so that subsequent
Interrupting requestors are receiving spurious returns
regarding the held queue?
Should any registers be saved on entry?
Are all Increment counts properly initialized (0 to 1)?

2. Wrong

(a)
(b)
(c)
(d)

3. Extra

Are absolutes shown where there should be symbolics?
On comparison of two bytes, should all bits be compared?
On built data strings, should they be character or hex?
Are Internal variables unique or confusing if concatenated?

(a) Are all blocks shown in design necessary or are they extra-
neous?

3-7 IS

— J

3.2.3.2 Use

This technique or variations of this technique Is frequently used during
the system design and system Implementatlor phases of a software development
project. It Is a manual technique used on projects described by Corrlgan [30],
Buckley [28], Fagan [29], and Scherr [31]. Fagan presents data on the net
savings of using Inspections. The design verification technique was also
used on six of the ten prcarammlng projects described In Section A.

3.2.3.3 Advantages

The advantages of this technique are:

a. The error rework cost (which Is a significant variable In product
cost) decreases due to the early detection of errors.

b. The quality of the product is improved.

c. An increase in programmer productivity is achieved due to a positive
psychological effect that design verification has on programmers.

3.2.3.4 Disadvantages

The disadvantages of this technique are:

a. The lack of enthusiasm by the people performing a design verifica-
tion. Design verifications are considered by some people to be
tedious and boring.

b. Some errors found during a design verification would be more easily
found by the compiler after the program is coded. This is usually
the ret-ult of reviewing an overly detailed design.

3.2.4 Execution Analysis

3.2.4.1 Description

This technique is defined as the automated monitoring of the computer based
software testing activities, collecting data from these testing activities,
and subsequently predicting, by manually analyzing the data, the duration
and cost of testing, and the quality of the software product. Other terms
used in the literature referring to this technique or variations of this
technique include code analyzer, code auditor, program evaluator, and product

assurance evaluator.

There are two areas of data collections on testing. First, error data from
past projects is collected and analyzed. This data can be used to evaluate
costs and trends in testing. Second, the data is collected while a project

3-8

mmm

^^i^mimmmmmmmmmmm*immmii***^™^m*^'™*'^**mi^*mmm i '' ^tmrnmrn^mmmn

;
Is being developed and tested. This technique, ss described In the literature.
Is usually used In the second area.

There are two approaches for Implementing this technique. One approach is to
design data collecting tools Into the system during the system design phase
and develop these tools as an Integral part of the end product. The other
approach is to develop stand-alone tools or system to collect and report data.
Several tools using the latter approach to the execution analysis technique
are described below.

3.2.A.1.1 Program Evaluator and Tester (PET)

Stuckl [32, 33, 34] describes a tool - Program Evaluator and Tester (PET) -
that uses the execution analysis technique. This tool "instruments" an appli-
cation software package by Inserting the software equivalent of sensors into
the package. Each time the software package under test performs a signifi-
cant event, the occurrence of this event is recorded. He describes tVM re-
corded data as follows:

a. The number and percentage of all potential executable source State-
ments which were executed one or more times.

b. The number and percentage of those program branches taken.

c. The number and percentage of those subroutine calls which were
executed.

d. The number of times each subroutine was called, together with a
list of those subroutines that were never entered.

e. Relative timing on the subroutine level.

f. Specific data associated with each executable source statement.

1. Detailed execution counts.

2. Detailed branch counts on all IF and explicit branches or GOTO
statements.

3. Optional data range values (min/max/first/last) on assignment
statements.

4. Optional min/max ranges on DO loop control variables.

A more advanced variation of this inetrurentstion tool is described by Stuckl
and Foshee [35]. They describe a new series of automated functions that are
being designed and implemented. They further describe the incorporation of
design verification criteria directly into evolving systems through a power-
ful assertion capability. The scope of the assertions presented encompasses
the entire life cycle of a programming system from initial program design
through operation and maintenance. A preprocessor examines a source program

3-9

17<

__

jmmm****'r^m*^^m*mm*mKF^mmmimmm'**'**i^^m**1*im**Wfm***m' " ui^-^mimtmmm u m~mrmm*mm ii i .M-H. ■ -~*^mrm*immm*m**~"^*mim ■■■in i iii

and Inserts additional source statementd to gather pertinent statistics during
program execution. A postprocessor matches statistics generated during program
execution with Individual source program statements to produce an annotated
program listing and summary report. This advanced approach Is shown In Figure
3-2. The/ have Identified three types of automated Instrumentation of programs.
They are:

a. Monitoring source statements execution and branch conditions.

b. Verification of assertions on data cha^ccterlstlcs and program
behavior.

c. Monitoring range of values assumed by scalar variables, arrays, and
subscripts.

3.2.4.1.2 Product Assurance Confidence Evaluator (PACE)

This system, comprised of automated tools. Is described by Brown and Hoffman
[21] and Nelson [36]. This system Is designed to assist In the planning,
production, execution, and evaluation of computer program testing. Two com-
ponents of the PACE system, AUDIT and PATH, define all logic paths and eval-
uate test effectiveness from the standpoint of the number of logic paths
actually executed versus the total number of possible logic paths.

3.2.4.1.3 Program Testing Translator (PTT)

This tool Is described by Stuck! [32]. This tool gathers and analyzes data
In two general areas: (1) the syntactic profile of FORTRAN source programs
showing the number of executable, nonexecutable, and comment statements, the
number of CALL statements and total branches, and the number of coding stan-
dards violations; and (2) actual program performance statistics corresponding
to various test data sets.

3.2.4.1.4 Software Implementation Monitor (SIMON)

SIMON Is described by Corrlgan [30]. It contains as basic elements the func-
tions of compile, test, report, and edit. The compile function performs
"static module analysis" of source code and compiler output to extract infor-
mation such as complexity measures, test path analysis, and static resource
requirements. The precompiler and postcompiler can also insert instrumenta-
tion into the code and can monitor the coding conventions used. The test
function performs "dynamic module analysis," extracting measures such as
paths tested, success-failure data, and dynamic resource use. The report
function disseminates status reports to project management based on data
collected by the other system components. Finally, the edit function allows
programmers to enter source code and information concerning the developing
modules, project personnel, error data, status changes, test plans and data,
and system documentation. These four modules operate on a common, hierarchi-
cal data base.

3-10

18<

 - - - -

pp^BW>^ipnypi«i|iWIW^WWPIWfWppH^|WH|pppnl I ^nt-iiBiw '^" ■..,. • ■■■■,,nV^. wmm^^mmmm^n'^mm^mmiimm^v .■ ui'1 —■■•

Source Program
Text and

Instrumentation
Data

Source Program

Preprocessor

Instrumented
Source Program

Source Program
Compile and
Execute

X
Execution
Statistics

Postprocessor

-►

User I/O

Summary Reports

Annotated
Program Listing

3-2. Advanced Execution Analysis Approach

3-11

— - ■ -

ijiiu ftm\m*mmiinntm^mmmmmimmmmß^mmil^ttHfr'''iff im im '** ■■■■■•■

3.2.4.2 Use

The execution analysis technique appears to be used on a limited basis. It
Is described as a computer based formal testing technique which would be
utilized In conjunction with other testing techniques during the system eval-
uation phase of a software development project. However, this technique
could also be used as an Informal technique during the system Implementation
phase.

3.2.4.3 Advantages

The two major advantages of this technique are:

a. The automatic control and monitoring of test activities.

b. An aid In enforcing programming and system developuent standards.

3.2.4.4 Disadvantages

The only disadvantage of this technique is the high cost of developing the
tools which utilize this technique since any one of these tools is limited
to a specific programming language and/or hardware.

3.2.5 Automated Network or Path Analysis

3.2.5.1 Description

The automated network or path analysis technique defines a practical measur-
able means by examining source code and determining the minimum set of paths
which exercise all logical branches of a program. K. W. Krause and R. W.
Smith [37] describe a system that analyzes FORTRAN source code.

The following outline of this technique and Figure 3-3 were extracted from
Krause and Smith [37]. They define the following terms that are used only
for the description of this technique but are not used again throughout the
remainder of this report.

a. Segment of code-the smallest set of consecutively executable state-
ments to which control may be transferred during program execution.

b. Segment relatlonshlp-the relationship between two segments of code
resulting from the transfer of control from the first to the second
segment.

c. Impossible pair-segment relationships which cannot occur in the
path.

3-12

ii imiini.fm.mm

I
^ ■ iw imi *- • — '•- ■" <" ■■ ■ ■■(^"■WP'H »wjpwwiiip^pir^

?

I
.

K>0 ^
2

K-(

3[

s K<0

1 1

N

)

3 4 5

3-3. Example of Network or Path Analysis

3-13

M.MM

wimpi***mimimimmmm!***!^*m*w^*mammm*nm*mmmmmm**'*i*~*mmmmmf*mf^^

d. Qualifier aegment-a segment which can modify segment relationships.

e. Base path-a concatenation of segment relationships which begins at
an entry point, ends at an exit point, and contains no repeated
segments.

f. Loop-a concatenation of segment relationships which begins and ends
at a repeated segment and contains no other repeated segments.

The automated network analysis technique uses three major processes: Source
Code Analysis, Base Path and Loop Generation, and Optional Path Design.

a. Source Code Analysis-The subject module Is analysed to Identify
statement types and assign numbers for reference. Each segment Is
then analyzed to determine: (1) the segments to which each segment
can transfer, (2) the segment from which each segment Is accessible,
(3) the type of branch expression ending a segment, (A) branch
variable, (5) Input variables, and (6) output variable. Once this
Is done. Impossible pairs and qualified segments are determined.

b. Base Path and Loop Generatlon-In this step, the segment relation-
ships and Impossible pairs are used to generate all possible base
paths and loops In a segment module. The segregation of paths and
loops reduces the number of module components to a workable size.

c. Optional Path Deslgn-The technique begins Its optimization and selec-
tion process. This process begins with the selection of the base
path containing the maximum number of segment relationships. This
Is called the characteristic path. The subset of loops which Is
directly or Indirectly accessible from the characteristic psth Is
Identified, and the optimization process Is applied to Identify
characteristic loops. The optimal path designed contains the maximum
number of unique segment relationships In the characteristic path
and Its characteristic loops. Once this Is determined, test data
may be defined for the candidate path.

Figure 3-3 presents an example of how thin technique optimizes test paths.
The segments In this example are 2-3, 2-4, 2-5, 6, 7-8, and 7-9. Impossible
pairs of segments are (2-3, 7-9, and 2-4, 7-9) because of the values of the
parameter K. Statement 6 Is a qualifier segment. There would be six paths
to test In this example If all paths were to be tested: (1-2-3-6-7-8),
(1-2-3-6-7-9), (1-2-4-6-7-8), (1-2-4-6-7-9), (1-2-5-6-7-8), and (1-2-5-6-7-9).
Because automated analysis considers Impossible pairs and qualifiers, the
number of paths to be tested is four: (1-2-3-6-7-8), (1-2-4-6-7-8),
(1-2-5-6-7-9), and (1-2-5-6-7-8).

3.2.5.2 Use

This technique eppears to be used on a very limited basis. It is a computer
based Informal testing technique and could be utilized during the system
implementation phase of a software development project.

3-14

- -- - - ■

■•"I ■ ■■■■«! M»«M"IIJII«»""I""II'™W^P •--i—■'*mm*mmi^mm ^pnppppwpiapmwrni ii i M pwmm^-^v

> 3.2.5.3 Advantage«

The aajor advantages of thl« technique are:

a. The automatic determination of the optimal path« to b«. teated for
complex software con«l«tlng of an Infinite number of teat caaes and

patha.

b. An aid In enforcing progranmlng and control structure standards.

/

3.2.5.4 Disadvantages

The two major disadvantages of this technique ere:

a. The large number of Iterations required may be excessive for certain

types of software.

b. The requirements for user Interaction to Identify Incompatible branch
expressions not detected by the technique can limit Its usefi-lness.

3.2.6 Statistical Predictloi

3.2.6.1 Description

Statistical prediction Is defined as the computation of a confidence factor
that Indicates the effectiveness of the progranmlng and verification process
by inserting errors inio the software system. Mills describes this technique
in his paper, "On the Statistical Validation of Computer Programs" [38]. His
description of this technique Is summarized below.

Through an assert. Insert, test, and reject sequence, a confidence on the
effectiveness of the programming and verification process can be computed.

The sequence follows:

a. Assert that a given software system has no more than a selected
number of "indigenous errors," e.g., k ^ 0.

b. Insert a selected number of "calibration errors" into the software
system, e.g., j > 0. The insertion process consists of randomly
changing or deleting source statements and could be calibrated to
actual experienced software errors.

c. Test the software system until the j calibration errera are found,
and record the number of indigenous errors found in s testing pro-

cess, say 1.

3-15

L amm ^■-—m^^m' tMMm ■ ■

^»— •" "■' mMMmavai ————————— , tmmmmm. mmm

d. The confidence C le computed as:

e.

C -

C -

1

J.
j + k + 1

'.f 1 > k

lf 1 i k

(This result Is derived using e statistical maximum likelihood

estimation technique.)

C represents the confidence with which we reject the assertion
that h s k, where h Is the unknown numbers of Indigenous errors In
the program. An example Is shown In Figure 3-4.

The advocated method le to Insert errors Into the actual program on a random
basis. The confidence level gained from this Is a confidence in the testing

process Itself.

K- 0 K- 10 K- 100 K = 000

Calibration Confidence Galib'ratlon Confidence Calibration Confidence Calibration Confidence

Errors Errors Errors Errors

(i) (C) (i) (C) li) (O III (C)

I .SO 1 .06 10 .09 10 01

4 80 4 .27 20 .17 100 .09

9 90 9 .45 40 .28 200 .17

II .95 19 .63 100 .50 400 .29

99 .99 99 .90 200 66 1000 .50

o Confidence that no indigenous errors remain after
j calibration errors were inserted and found by testing
based on assertion that no more than k indigenous errors

existed and f ven that the testing procesr found no more

than k indigenous errors.

3-4. Software Confidence Calculations

3.2.6.2 Use

There is no indication in the literature as to the use of this technique in
a software development effort. Yelowitz [39] describes two code reading
experiments where calculated errors were inserted into the source code. The
first one, "Binary Search" had four seeded errors. A group consisting of nine
people achieved a score of 64 percent on the seeded errors and discovered two
additional errors. The group score oc the total of the six errors was 46
percent. In the second experiment, "A Marketing Algorithm," four seeded
errors were inserted, and one additional error was discovered. The group
scores were 59 percent on the seeded errors and 61 percent on the total errors.

This technique is primarily a manual based testing technique. It must be used
in conjunction with another testing technique and has the potentisl to be used
during the system design, system implementation, and system evaluation phases

of a software development project.
3-16

^4<

MM J

■««•■«^^^^"««■■■IWPH^WP^H^BPHiWÄP1 ' " ' " ■ -•" i^m«mmrmi*fmm^m^mf*mn^m^m " m

warn

(

4

l 3.2.6.3 Advantages

rwo potential advantages of this technique are:

a. An Important psychological effect occurs which motivates programners
to test more rigorously to find Inserted errors. The fact that a
programmer knows an error exists rather than thinks one exists
provides this Impetus.

b. By repeating this technique several times through test phases, a
statistical confidence factor can be computed which measures testing
effectiveness and Implies software reliability.

3.2.6.4 Disadvantages

There are several considerations that must be made prior to using this tech-
nique. They are:

a. What type of errors should be Inserted?

b. How many errors should be Inserted?

c. Who will Insert the errors? It must be someone aware enough of the
program fjnctlon, yet objective enough, to "seed" realistic errors.

3.3 VALIDATION TECHNIQUES

3.3.1 Functional Testing

3.3.1.1 Description

Functional testing Is defined as the execution of Independent tests designed to
demonstrate a specific functional capability of a program or a software system.
The cerm functional testing Is Imprecise but Is used because of Its frequent
use In the literature. Most verification end validation techniques test
functions, but the tests are not designed from a functional specification
viewpoint as Is the case with the functional testing technique. Priority In
functional testing Is on specification testing ti eher than program testing.
The primary purpose of functional testing Is to validate that user require-
ments have been correctly programmed and, thus. Its Intended use Is as a vali-
dation technique, but It Is also used as a verification technique.

Functional testing, as described by Elmendorf [40], Is a disciplined approach
to teetlng characterized by rigorous definition of the test plan, systematic
control of the test effort, and objective measurement of the test coverage.
He defines five steps In the testing process to begin Immediately after the
system to be tested has defined Its program objectives. They are:

3-17

^M J

*mmm^mt M immmwmmmmfimmmm^t^m^r^- I nil IIJJ|IIMW-^t^

A. The Survey establish«« the Intended extent of testing.

b. The Identification creates a list of functional variations eligible
for testing.

c. The Appraisal ranks and subsets the functional variations so that
test resources can be directed at those with highest priority.

d. The Review calculates the test coverage of the test case library.

e. The Monitor verifies thet the planned test coverage was attained.

Other good descriptions of functlcaal testing can be found In Freeman [41]
and Scherr [31].

3.3.1.2 Use

This Is the most frequently used validation technique, in has been used effec-
tively as both an Informal and a formal computer based testing technique. This
technique and several variations were used In testing systems such as the
Mission Operational Computer described in [27], the OS/360 Time Sharing Option
described in [31], and all ten programming projects described in Section 4.

The functional testing technique can be used during both the system imple-
mentation phase (as a verification technique) and during the system evaluation
phase (as a validation technique) of a software development project. This
technique is also the one most frequently used during the maintenance of soft-
ware.

3.3.1.3 Advantages

There are several advantages of this technique:

a.

b.

The testing is visible to the customer and oriented to the manner
in which the customer uses the system.

The testing process is measurable in terms of the number of functions
that have completed testing.

c. The testing of functions applies to all phases of test activities.

d. The revisions and control of the test specification is simplified.

3.3.1.4 Disadvantages

The two disadvantages of using this technique alone are:

L

3-18

mmmm. —mm ■«■■■«■«Ml

^^m^Bimfm •» >" <"" immmmmmr^****'**' ■' ■" ■^»■l i ■• - ' r ■ ■ '■■ ■ —■"■ ■■ ■ " —-^^ ■'- - ■ ■ "-" -■'

• ■ r i

a. All decision points of a program are not necessarily tested.

b. This technique la dependent upon a good original functional specifi-
cation.

3.3.2 Design Simulation

3.3.2.1 Description

Design simulation, as used In software validation, Is defined as a technique
that describes a proposed system, produces a computer based "model" or simu-
lated system, and then evaluates the effect of various system requirements
and design alternatives.

In the field of software validation, Drummond [42] describes two different
types of simulation that use this technique. They are trace driven simulation
and the algorithm timer.

The trace driven simulation has two elements: the act of tracing applications
and the act of simulating the applications on some other system. The Input
to the trace driven simulation model Is In the form of event time and Identifi-
cation. In some casas, the trace driven models have as their Input merely the
time and type of event. In these cases, the traced Input has Information on
what happened In the observed system rather than Information on why some
particular action took place. This type of simulation Is often used to deter-
mine the effects of particular multiprogramming or multiprocessing approaches.

The algorithm timer Is a simulation In which the concentration Is on a central
processing unit and its associated processor storage. The input to the algo-
rithm timer is an assumed stream of instructions. Simpler timers require that
the instruction string be "rolled out." That is, that any loops which may
have been in the original program be given as a sequential string of instruc-
tions, lot example, a six instruction loop which is assumed to have been
executed 1000 times would be presented as a stream of 6000 instruct!, ns.
This type of simulator is used for elements within the units which are extremely
sensitive to the sequence of Instructions and/or the location of data. The
algorithm timer is rost often used by the designers of products.

There are several other good descriptions of this technique referenced in the
bibliography Including [24], [25], and [43].

3.3.2.2 Use

This is a frequently used validation technique which was applied on three of
ehe ten programming projects surveyed and described in Section 4. This is a
computer based formal testing technique that is used most often during the
system design phase but is also uied throughout the entire software develop-
ment cycle. In its most common uie, a simulation effort is run concurrently

3-19
■■-'"-■*<
r^v «I ~

MM mmm

^Ul1 -•— -— --w^" w-w 1 ' ■" PI—^-

with design and Implementation, each group using its own language, with the
simulation serving primarily as a performance check on the design, but occasion-
ally as a logic check as well.

3.3.2.3 Advantages

The major advantages of this technique are as an aid to:

a. Ensure accuracy and completeness of conceptual design.

b. Study and evaluate alternative design approaches.

c. Evaluate Implementation progress and problems.

d. Determine the saturation points of various system components.

3.3.2.4 Disadvantages

The disadvantages of this technique are:

a. The tendency of the model to drift away from representing the real
system.

b. The high cost of constructing and testing the simulation model.

c. The huge amount of computer time required. In some cases, to simu-
late a very small segment of realtime.

3.3.3 Design Validation

This technique Is defined as the examination or Inspection of the functional
requirements and the design of a software system for the purpose of finding
errors. Other terms used to describe this technique or variations of this
technique Include design review, project review, design Inspections, walk-
throughs, and Inprocess reviews. This technique Is similar to the design
verification technique except that It Is performed earlier in the software
development cycle and at a system functional level. Three approaches to the
design validation technique are presented below.

Army Regulation AR 18-1 [44] describes this technique In their In-process
review. This review Is described below under the two headings "Inputu to the
review" and "outputs from the review."

3-20

:8<

UHUM, •^

■ ■■ ' ■ll "' mmmmm mmmmmmmm T~"^^^mmmm

!

)

a. Inputs to the review:

1. Functional eotcvare docuuentatlon Including

(a) General flow and process logic diagrams

(b) File layouts

(c) Edit and validity procedures

(d) Input and output formats

(e) Description of codes and notation

2. Draft of the functional user's manual

3. Personnel training plan and documentation,

b. Output from the review:

1. Interface with other systems

2. Interpretation of basi- xogio

3. Evaluation of whether the schedules can be met

4. Overall system design approach.

A project review is described in [45]. This review is summarized below under
the headings "Objectives of the review" and "Outputs from the review."

a. Objectives of the review

1. To review project status and communicate status to customers
and higher management. Participants in the review should include
project personnel (e.g., analysts, designers, progranoers, and
managers) and people who have not worked on the project.

2. To detect errors in the project plan or in the work accomplished

thus far.

3. To determine readiness for initiating the system implementation

phase.

4. To solicit recommendations for improvements in the project plan,
the conceptual design, or any other aspect of the project.

f.. .y

3-21

■M

m$mitwmmiß\nimmmmmmmmm&m**a*mtmmimmßimmmmim*****i*'m**' m ' mrmmmi^mmmmnm**^**^ •» 'f"1 m ^*mmmimm***m^r~-,Tmmimmm'i'*m

b. Outputs from the review:

1. A written statement(s) by the reviewers to the project manager
expresslr^ their appraisal of the project status, likelihood
of meeting objectives, specific weaknesses, and suggestions
for correcting any deficiencies.

2. A written report from the project manager to upper management
and/or the customer describing the results of the review,
problems encountered, proposed solutions, and problems requiring
upper management and/or customer assistance.

3. A common understanding of project status among the personnel
present at the review.

Fagan [29] briefly describes an Ig design inspection. This inspection takes
place early in the system design phase at the functional level by inspecting
the external specifications.

3.3.3.2 Use

This technique or variations of this technique have been frequently used during
the system definition phase or early stages of the system design phase of a
software development project. It is a manual based technique used on four of
the ten programming projects described in Section 4.

3.3.3.3 Advantages

The advantages of this technique are Identical co those of the design
verification technique described in paragraph 3.2.3.3.

3.3.3.4 Disadvantages

The disadvantage of this technique is Identical to the first disadvantage
of the design verification technique described in paragraph 3.2.3.4.

3.3.4 Matrix Analysis and Problem Statement Languages

3.3.4.1 Description

Matrix Analysis and Problem Statement Languages use a forms oriented language
or a formal syntax language to communicate the needs of the user to the analyst.
This technique is still in the experimental stage although Merten and Telchroew
[19] describe several such languages: Information Algebra, Time Automated
Grid System (TAG), Accurately Defined Systems (ADS), and Problem Statement
Language (PSL). These languages are primarily designed to aid in the analysis

3-*2
^

MM«^

w*W9m<} na^iwi^i ■PPPPWP^I I MIMMIUUII I ■■»WPW1BH

of the functional requirements, but they also can aid the analyst In vali-
dating the functional requirements. Two approaches to the matrix analysis
and problem statement language technique are presented below.

Head [46] describes TAG, an example of a matrix analysis language. TAG takes
a description of the required outputs, classified by priority, format, sequence,
«nd frequency and works backward to determine what Inputs are needed and at
what times. Using descriptions of Inputs, outputs, and data elements, TAG
can report deficiencies and Inconsistencies In data specifications such as
logical, time, sequencing problems, and duplicate data Items.

Kosy [24] describes the "Information System Design and Optimization System"
(ISDOS). Teils Is a large research effort at the University of Michigan that
contains both a Problem Statement Language (PSL) and a Problem Statement
Analyzer (PSA). The PSL Is used to define the system by specifying Input/
output requirements, data definitions, time requirements, and volume require-
ments. The PSA analyzes and critiques the PSL statements. The FSA program
checks for proper syntax and semantic usage, logical time related elements,
completeness of static Interrelationships, and then generates several different
reports.

3.3.4.2 Use

This technique has been used on a very limited basis according to Merten and
Telchroew [1Q]. it appears to have potential in the future for validation by
having the analyst work closely with the user in evaluating the system require-
ments and in facilitating the elimination and detection of logical errors by
the user.

This technique is computer based, both a formal and informal technique, and
could be used during the system definition and system design phases of soft-
ware development.

3.3.4.3 Advantages

The idvantages of this technique are best summarized by Kosy [24]:

a. Complete and unambiguous data structure definitions (e.g., trans-
actions, tableii, files, lists, queues, reports, and displays).

b. Complete and demonstrably precise interface definitions for both
flow of control and flow of information, including module dependen-
cies on the data base, dependencies on other modules, dependencies
on inputs, and dependencies on parameter lists.

c. Assurance that the control logic embodied in the design will sequence
the required software tasks correctly for all input combinations.

d. Assurance that each task is functionally complete and unambiguously
defined.

3-23

v?l<

mm «_ -—

tmrnmrni ii i ii (ppiiiBi II ivH.in i I I If .14WII "'- —' -^mmmmmmmmmmimmr^^mm ~ • ■""

M

3.3.4.4 Disadvantages

The major disadvantages of the technlq- s are:

a. No efficient means of analyzing a problem definition given In a
problem statement language.

b. The high cost of stating the requirements In a formal manner.

3.4 SUMMARY

Ten traditional testing techniques were described i'. this section. Of these,
four computer based and two manual based techniques are classified as verifi-
cation while three computer based and one manual based are classified as
validation. The three techniques most frequently used are driver, test data
base, and functional testing. The Impact of SPT on these ten testing tech-
niques are described In Section 5.

3-24

_ J

m^mmmmm • ■■ -■ —" ' ■ ■■ '■ i «ii i iii.nmii ^

; Section 4

STRUCTURED PROGRAMMING PROJECT SURVEY

4.1 INTRODUCTION

Ten IBM, Federal Systems Division (FSD), structured programmlig projects were
surveyed. They covered a wide variety of applications, from the NASA Apollo
Soyuz simulation to a Japanese banking system to utilities used In supporting
the FAA's Enroute Air Traffic Control System. The projects surveyed were
performed In Japan, California, Texas, Virginia, Maryland, and New Jersey.
For each project Included In the survey, there Is a description of:

a. Project overview

b. Structured Programming Technology (SPT) components used

c. Test environment

d. Verification and validation techniques used

The structured programming technology components are described In Appendix B.

; 4.2 MITSUBISHI BANK NEW SYSTEM - JAPAN

4.2.1 Project Overview

The conversion of the Mitsubishi Bank of Japan to a new online banking system
began with a special analysis and performance modeling study by FSD. Mitsubishi
Bank personnel developed the new banking system. FSD provided project control
services, system test plans, guidance of system test execution, performance
analysis, and system tuning. New hardware and additional banking application
functions were added to the new system without disturbing the existing banking
system. The entire new system became operational la May 1974.

The system was developed and tested on the IBM System/370 two Models 135 and
two Models 165, with Interfaces to existing UNIVAC 494 processors, NCR 42
banking terminals, and IBM 3270 Video Display Terminals.

4.2.2 SPT Components

Structured programming technology components used on this project Include:

a. Structured programming In Assembler Language using structured pro-
gramming macros support

4-1

^Mb^

^*mmmmmmm^^mmmmmmmmmmwm''i''i'*'maiKfl''™m' ' "" ' ^""m"fmmwmtmin^mi^mmmnmwi^m^mmmi ■■ -<—spivn^an iwt

b. A program support library for programs In:

1. Early stages of development

2. System Test

3. Operational Test.

4.2.3 Test Environment

During the system design phase. FSD prepared •f-J^J^ "SÄ^
was aSopted by the Mitsubishi Bank -^^^^d ^Uonil testing,
eluded tests for several level, of bo^ P"^^* *^l8 were designed and
During preparation of the test plans, required test tools we

scheduled for development.

testing with two full configurations. A separate test controx g v

up to handle the system testing activity.

4.2.4 Verification and Validation

The verification and validation techniques used Include:

T. * * H-f« drivers written to allow concurrent program develop-

the operational data base and system message journals,

combinations.

balance channel loadings.

Other verification and validation techniques, not described in

Section 3, were also used. They Include:

to locate bottlenecks.

e.

4-2
34<

MM

iiiij ii wai i in lampiiiM ■■J-i»« i »■■ i w «PMHW^P««PMHP««^linMM*nppMOT««|Pn^- | l| Mil JUin

I
J 2. A statistical technique was used to determine tha "end of

testing" during the system evaluation phase. The curve of
outstanding problems for a specified time period was compared
to the curve of corrected problems for the same time period.
When the curve of corrected problems became parallel to the
curve of outstanding problems, the system was considered
ready for operational use.

3. Coding optimization techniques were used which ere described
by D. B. Martin [47] and Joseph H. Green [48]. These tech-
niques were used after the results of the design simulation
were evaluated.

4.3 GROUND SUPPORT SIMULATION COMPUTER FOR ASTP - HOUSTON, TEXAS

4.3.1 Project Overview

The Apollo-Soyuz Test Project (ASTP) Is a combined USA/USSR flight test experi-
ment which will join a manned Apollo spacecraft and a manned Soyuz spacecreft
In earth orbit. The primary objective of this joint flight Is to conduct
space experiments Investigating the compatibility of systems used in rendez-
vous, docking, and crew transfer between future USSR and USA manned space-

craft and stations.

The round Support Simulation Computer (GSSC) developed for Skylab will be
modified to provide the flight controller training for the Apollo-Soyuz mis-
sion. The GSSC simulates the Apollo and Soyuz vehicles, experiments, and the
data comirunications network. It generates and sends massive amounts of real-
istic mission radar and telemetry data to the Mission Operational Computer
(MOC) for flight controller evaluation. It simulates all phases of the mis-
sion for training in nominal (normal flight) and contingency (abnormsl) sit-
uations on the IBM System/360 Model 75.

4.3.2 SPT Components

Structured progranming technology components used on this project include:

a. Top down programming

b. Structured programming in Assembler Language using structured pro-

gramming macro support

c. A program design language

d. Program support libraries.

4-3

mmm— ■ ——

 « > iwmmiiimmi*^^m~mmmmmm***K*^™m'rmmim*'.m'i*>" '***immi nmpRiw^n^mn«—m>w«pvmipiiiiiiii i i ' ' immtm

4.3.3 Test Environment

A formal test plan was required and periodically reviewed by the customer.
An overview description of the functions to be tested was prepared. More
precisely defined verification tests and expected results would have Increased
the effectiveness of the Independent test teams during the latter stages of
the Implementation phase, especially In testing functions affecting several
subsystems.

A Remote Test Facility developed for earlier projects allows testers to simu-
late the AST? realtime operational environment In one SyBtem/360 Model 75
with no external hardware. This facility provides a jobshop environment for
testing at a systems level, reducing resources required for testing and de-
creasing duplicate testing efforts.

Only two levels of testing were performed on GSSC due to top down structured
prograraml. .,: function tests during the Implementation phase and function tests
during the evaluation phase.

4.3.4 Verification and Validation

The verification and validation techniques used Include:

a. A driver which simulates the command modules am' sends "astronaut
actions" to the GSSC.

b. Functional testing *rhlch Is performed for nominal situations and
for contingency situations.

c. Design verification of new modules, using walk-throughs, before
Implementation begins.

d. Design validation which Is used when major modifications err required
for the complex realtime system.

e. Top down resting performed with major functions being tested as
they were developed, followed by the tests for subordinate functions
developed later In the Implementation phase.

4-4 ^G-

 —

vmmmmimmmmmimmmmmmmPm**^ wm^mmwr^m v« ■wfff'w^^ipnBmvwpvr m********

j 4.4 ADVANCED CONTROL SYSTEM (ACS) ■■ HOUSTON, TEXAS

4.4.1 Project Overview

A processing control system for oil refineries Is being developed for Imperial
Oil Enterprises, Limited (IOEL) of Canada and ESSO of Belgium. ACS is a
real-time system which monitors and controls the continuous and batch processes
that are found in a crude oil refinery. ACS is designed to allow user inter-
action with the system through console groups composed of combinations of IBM
3277 (black/white) and IBM 5985 (color) display terminals. ACS is also used
in planning, initiating, monitoring, controlling, and perfc rming shutdown in
the blending of gasoline and other products produced in the refinery. The
system is currently in use at the IOEL Strathcona refinery, Edmundton, Canada.

The system was developed and tested on the IBM System/370 and IBM System/7.

4.4.2 SPT Components

Structured programnang technology us*d on this project includes:

a. Structured programming in Assembler Language using structured pro-
gramming macro support

b. A program design language

c. Program support libraries

d. A programming librarian.

4.4.3 Test Environment

A detailed system test plan was prepared for each refinery covering multiple
computer and refinery field Interfaces. A separate test team cotnpilsed of
IBM and customer personnel performs the system test. Discrepancies found by
the team are tracked in daily reports which reflect discrepancy activity.

Most testing is done in interactive mode using the IBM Syste.-n/370 Real Time
Operating System (SRTOS). Four levels of testing are performec1 for ACS:

a. Unit tests during the implementation phase.

b. Integration tests by the development test departments for possible
subsystem impact of interdependent code during the final stages of
the implemenation phase.

c. System tests of all functions during the final stages of the implemen-
tation phase.

4-5

— m*m - —

:w« *Hnnm«H*mB^ wmmmmm^mwfmmm 9mmr~~* • —■i n . ■■ i i »i

d. System acceptance tests with a complete regression test series snd
customer engineer tests during the final stage of the evaluation
phase.

4.4.4 Verification and Validation

The verification and validation techniques used include:

a. Drivers are used because the software and special hardware are being
developed concurrently. They are used as:

1. Hardware simulators for field elements to provide inputs and
status information

2. Hardware simulators for tank gauging and digital temperature
indicators.

b. Test data bases were used.

c. Functional testing was performed with:

1. Test narratives which list a general description of "he func-
tion to be tested, the capabilities to be tested, verification
method, and data base requirements.

2. Test cases which detail the steps to test the capabilities
identified in the test narrative.

d. Another verification and validation technique, not described in
Section 3. Analysis is performed by a hardware monitor of 1/0
utilization which revealed bottlenecks in 1/0 processing.

4.5 EARTH RESOURCES INTERACTIVE PROCESSING SYSTEM (ERIPS) - HOUSTON, TEXAS

4.5.1 Project Overview

ERIPS analyzes remotely sensed earth resources data. The system processes
uniquely formatted tape image data returned after each Skylab mission as well
as proceasin'- data recorded by aircraft and satellites. Using ERIPS enables
scientists to study seismic, agricultural, geological, and oceanographic infor-
mation, and sources and patterns of air pollution. The system was developed
and tested on an IBM System/360 Model 75 with speciel purpose terminals.

4-6 v:8
<

'*am wa

"W^l " ■ war'1 ■ ■' ' • ^i^^mmmmn^^^mm^mmrm^mmm^tm^^ -••v^^m^^r^mqmi

A.5.2 SPT Component8

Structured programming technology componentc used on thl« project Include:

a. Top down programming

b. Structured programming In Assembler Language using structured pro-

gramming macro support

c. Program support libraries

4.5.3 Teat Environment

Acceptance test specifications were prepered during the design phase at the
same time as ehe specifications were prepared for program development. Testing
Is done In en Interactive mode via special purpose terminals containing a con-
versational screen, Image screen, color monitor, keyboard, and cursor control.

There are three phases of testing for ERIPS:

a. Top down testing resulting from using top down programming.

b. Inclusion of modifications and new capabilities after a regular
system build. A separate verification team performs extensive testing
of new modifications and some regression testing.

c. Before periodic release to the user of any version of ERIPS. Tue
ver: fication team performs an exhaustive test of all system func-
tions to ensure Integrity of the entire system.

4.5.A Verification and Validation

The verification and validation techniques used include:

a. A test data base which is used during development and is controlled
by the program development manager. For system testing, a separate
test data base is employed. The operational data base is used with

the released system for scientific analysis.

b. When function tests are being developed, the tests «re set up so
that all reading of the data base takes place before any updates, thus,

minimizing data base problems.

c. Design validation and design verification are performed as part of

the customer ERIPS interface.

"&■

muüH ■'i''^^^i~vmmmm*n^'*^*^m^mmmmmm ^^iBWBPB^ww^wwiPiPifWPiWPiB^ppn^wwwii jiwmvaqnOT^Mwwnw'^mx

Top down testing Is performed In both an Interactive and batch
environment. In the past, most testing was Interactive. The batch
testing capability has been upgraded as part of the operational
system and thus will be more heavily used In the future.

A.6 FAA NATIONAL AIR SPACE SYSTEM SUPPORT SOFTWARE (NASCOR, ACEUTE) -
ATLANTIC CITY, NEW JERSEY

4.6.1 Project Overview

The Federal Aviation Administration (FAA) National Air Space (NAS) system
Is currently In use at 20 Alr-Route Traffic Control Centers (ARTCCs) through-
out the United States. Each ARTCC Is responsible for controlling flights
through Its assigned air space which Is divided Into geographical sectors.

Flight plan maintenance and flight monitoring are primary NAS functions.
Radar data is received by the system, processed and classified, then matched
against previously received flight plans and Identified.

Each center has a unique set of site-dependent adaptation data in its data
base, all the relatively stable information needed by NAS. The program gener-
ating this adaptation data is called ACES.

Testing such a system requires considerable software support. NASCOR provides
formatted printing services and analysis services of a NAS core dump tape.
ACEUTE is a utility which analyzes adaptation data, provides lists, and gener-
ates system test tapes from an ACES system input tape. These utilities ware
tested and developed on an UM System 9020 using OS/MVT.

4.6.2 SPT Components

Structured programming technology components used in this project include:

a. Top down programming

b. Structured programming using the JOVIAL language

c. Program design language

d. Program support libraries generated by the NAS support software
group for use with JOVIAL and its data tables (compools)

e. Programming librarian for the development of ACEUTE.

4-8 40<

-- _*._

mmtrmmmtm nail ial i n m i ■iMw^^n^i i« IM w^**^rrmi^m*rimmiii ^i*mm*m**

)
4.6.3 Test Environment

During implementation, testing was in batch mode and a separate test team was
used. Three levels of testing were performed on the NASCOR/ACEUTE utility

programs:

a. Unit tests during the implementation phase.

b. Preliminary system testing of all baseline functions one week before
releaae to the NAS System Test Department.

c. Continuous checkout while being used as system test tools by the
NAS system teat group during and after the evaluation phase.

4.6.4 Verification and Validation

The verification and validation techniques used include:

a. A test data base was created for NAS testing to provide a fictional
center with a corresponding set of adaptation data to describe it.

• It was designed to incorporate a nominal set of data and all the
idiosyncrasies of all ARTCCs. It is used for all levels of NAS
testing at the National Aviation Facilities Experimental Center
(NAFEC) in Atlantic City, New Jersey and also in unit testing NASCOR/
ACEUTE. For a preliminary system test, the actual tapes of the ARTCC
adaptation data are used in verifying NASCOR/ACEUTE functions.

b. The functional objectives wtre established and presented in a user's
guide. Functional testing »as performed from the user's guide.

c. The system design was verified with a design review.

d. Very recently, code verifications of NASCOR/ACEUTE.

e. Top down testing was used which resulted in fewer errors as inte-
gration difficulties were identified and solved early. Consider-
ably fewer errors were observed in using the structured programming
techniques compared to the more traditional techniques.

4.7 RESOURCE MONITORING SYSTEM FORCE STATUS - ROSSLYN, VIRGINIA

4.7.1 Project Overview

Maintenance of data coding systems that facilitates processing and exchange of
military resources within and between components of the Department of Defense

MM«

"•"I*" WH I («p^pp^W»!! II IJ ii IP IPI. . II 11 lllHp.Wlll«l. I«IWII| ■■■__ 1-' ,*mvmimwm,m., K w "• -■- — i< — '■ ' i.—»Wü^« -——^-^^—T™,-,-»-—-, P i" -P - I- ■ ■' < "

(DoD) con^med with force and facility reading i. a Joint Chi.f. of Staff
tequire^nt Th. Raaourc. Monitoring Sy.ta« (RMS) objective 1. " P^vlde a
Hngle framework in which reeource data »ay be »aiat.ined end «c^8ed. RMS
la compoeed of the Force Statue (FORSTAT) infonnation .y.t«n and three ee.o-
"ate7Reference File .ub.y.te«e. The system was developed for . Honeywell
computer.

4.7.2 SPT Components

Structured programming technology components used 00 this project include:

a. Structured programming in ANS COBOL

b. Program design lenguage

c. HIPO

d. Program support libraries generated for FORSTAT for use with Honey-

well COBOL

e. Programming librarians (maintenance/development/test).

4.7.3 Test Environment

The test plan lists capabilities, key tests, and schedules Th* «y8^*^
plan contains very detailed test sheets for new development f.reas. There
«e multiple versions of the system to handle new modifications and changes
to the base system. These multiple versions must be very carefully controlled
to prevent problems. Since the system is very dynamic, the development team
ias reorganized to provide a separate test team in time for the system test

effort.

Te.ting is primarily in the batch mode with two levels of FORSTAT testing:

a. Unit testing during the implementation phase.

b. Functional testing during the evaluation phase.

A number of test cases are stored in a disk library with more to be developed

and added in the future.

4.7.4 Verification and Validation

The verification and validation techniques used include:

a. A driver used to build the data base for testing.

4-10

42<

M^

Kmtmmmjmvimmi^mm '*~'^m^mmm**^^**m mmm
1 "'' "■■, ' ■

b. A small subset of the operational data base used for system test
due to space constraints.

c. Functional testing used to validate the capabilities described In
the test plan.

d. Code verification performed by a peer on all code before testing.
This Is considered to be so valuable that It Is a fonoal part of
each programmer's task.

a. Design verification performed on the program design language by using
structured walk-throughs.

f. Other technique«, not described In Section 3, were also employed.
Manral based path analysis and matrix analysis were used In pre-
pprlng the detailed system tests and charts for test results.

4.8 MULTI-OPTICAL SENSOR SIMUJATION (MOSS) - WESTLAKE, CALIFORNIA

4.8.1 Project Overview

The Multi-Optical Sensor Simulation (MOSS) Is an extension of the Spacetrack
Augmentation Data Processing Simulation (SADPS) study performed earlier for
the Space and Missile Systems Organization In Los Angeles, California. The
MOSS provides a software functional simulation of optical sensors, both
groundbased and aboard surveillance spacecraft. Developed concurrently was
a prototype software system which simulates data processing of the optical
sensor data through trajectory determination. The system was developed,
tested, and demonstrated on the IBM System/360 Model 75.

4.8.2 SPT Components

Structured programming technology components used on this project Include:

a. Chief programmer team concept*

b. Top down programming

c. Structured programming In FORTRAN with a preprocessor

d. Variation of HIPO* Including:

*A1 though these are not considered part of SPT defined In Appendix B, they are
Included for purposes of the project survey.

4-11

H« mm

■i wwniii>i> in.« ■■■mil '■ ■ ' ' " i i™ »"

e.

1. Simulator Inputs

2. "Design notes" - algorithm specifications, how to do function,
where applicable

3. Output definitions

Program support libraries.

4.8.3 Test Environment

A system teet plan was required by the customer who approved and added to
what FSD presented. There was no separate test team because of the relatively
small size of the. project and the limited period of performance.

A preprocessor vtis used to add the IFTHENELSE/DOWHILE/DOUNTIL capabilities
and processing without labels. It was strongly felt that structured program-
ming without the proper tools reduced the advantages conjlderably. Top down
programming was performed during batch job processing and testing was in
batch mode wherever possible. Block time was necessary at times to ensure
availability of computer resources and to collect performance statistics.
There was one level of »-astlng for MOSS but two types of tests: customer
defined acceptance tests and 'additional' tests designed by FSD to exercise
other options.

4.8.4 Verification am' Validation

The verification and validation techniques used include:

a. Two drivers, nacessary due to concurrent sensor simulation/ground
software development. They were used to generate a data base until
the sensor simulation was available to generate the data base and to
simulate the 1/0 in order to run the tes'-s.

b.

c.

d

Test data base used during the early stages of the implementation
phase.

Functional acceptance and 'additional* tests perforrofd during the
evaluation phase.

Code verifiration used when a problem was encountered and for cer-
tain critical paths during the implementation phase.

Top down testing, the only computer based testing, performed during
the implementation phase of MOSS.

4-12 i4<

- ■ - ■ MIBUM ■■ - ■■ -■ ■

■^pmv^iHijii uiuiiiP i iMiiiwui IUJII. .mil wwmm "- ^^^^^fm^,m w,«i»p^^^^w5PWBP*wum*'^,'^^l^WP^p,p ^■■«"•^»WP'"''' "W

4.9 TEST CONTROL COMPUTER SUPPORT SOFTWARE (TCCSS) - GAITHERSBURG, MARYLAND;

ENDICOTT, NEW YORK

4.9.1 Project Overview

The Test Control Computer Support Software (TCCSS) written In Galtheraburg was
part of a Joint effort between System Products Division (SPD) and FSD. The
objective of TCCSS was to extend the operating services to establish a compu-
ter environment In which the problem (application) program could run tests
of hardware logic circuitry. The system was developed and tested on the IBM
Sy8tem/370 Models 145 and 155 with 0S/VS2 and OS/MVT.

4.9.2 SPT Components

Structured programming technology components used In this project Include:

a. Top down programming

b. Structured programming

c. Program design language

d. Program support libraries

e. Programming librarian

\ problem was encountered In reconciling an Interactive library system and a
librarian where the relationship between the source modules and their gener-

ated code Is confusing.

4.9.3 Test Environment

The TCCSS test plan described the functions to be tested. The delivery sched-
ules were revised to accommodate structured programming milestones.

a. The completion of the program design (I.e., PDL was used) replaced
the traditional unit test milestone.

b. Top down programming supplanted Integration of modules. Testing
was performed as the system developed without a separate test team.
Acceptance testing was carried out by the SPD "customer" is Endlcott,

New York.

Testing was Interactive as It Is a terminal-driven system and com-
patibility between 0S/VS2 and OS/MVT was necessary. Most of the
testing was performed using block time In order to get the resources
required for "top down" testing and Integration.

4-13

:5<

»»•■■•«^«■vHiPmmiiiiijj ■■■• i. •■■..i "I.M.U, IIHH1 >■ .1. i-p.ii »»III iummww^y^mmmmr^immiimtwi ■ ,i" ■..--P^ü ——w. .»■ .» i ■>.! i in« m imm**w-i

Two levels of testing occurred for TCCSS:

1. Top down testing during the implementation phase. Some unit
testing due to an access method problem.

2. Acceptance testing by the customer during the evaluation phase.

4.9.4 Verification and Validation

The verification and validation techniques used include:

a. Small drivers developed due to system software problems.

b. Test data bases used during the early stages of the implementation

phase.

c. Functional testing used during both the implemenation and evalua-

tion phases.

d. Design verification performed by using structured walk-throughs.

e. Top down testing.

4.10 TRIÜENT AN/BQQ-6 SONAR SOFTWARE - MANASSAS, VIRGINIA

4.10.1 Project Overview

The Navy's TRIDENT AN/BQQ-6 Submarine has advanced technology sonar software
and hardware which are being developed concurrently in Manassas. Though
earlier software was developed traditionally, all new software will use struc-
tured programming technology. The sonar software is being developed and tested

on the IBM System/370 and AN/UYK-7 computers.

4.10.2 SPT Components

Structured programing technology components used on the project include:

a. Top down programming

b. Structured programming with a preprocessor

c. Program support libraries for programs in development, test and
integration, and a master library for programs ready for system test.

^G-

—^ P" ■ i " «•w^—-»-i^Bpn "»■" ^"W '■ " ■ ' ' -.—. • '"•"•■

4.10.3 Teat Environment

In the AN/BQQ-6 environment, prior to hardwere/software integration, there
are two software testing paths which coincide with the concurrent hardware

and software development:

a. The traditional hardware testing cycle utilizing unit and subsystem
test software followed by use of functional elements of the opera-
tional software. This latter testing confirms the validity of the
hardware/software interfaces and timing.

b. A second path following the development testing milestones used for
structured programming management with a multi-library concept:

1. Development Testing - Utilizes development library with testing
via the language system facilities, to perform initial func-

tional testing.

2. Test and Integration - Utilizes integration library and hard-
ware simulator for extensive functional testing and initial
software system concurrency testing.

3. Inclusion in Master Library - Library is under Configuration
Management Control, and testing of the programs via the hard-
ware siw-lator is accomplished by an independent test group,
utilizing formal test plans and test procedures. The objective
is functional testing against requirements and full software

concurrency testing.

The independent test group used Navy approved system requirements documents,
the approved Computer Program Performance Specifications (CPPS) and the Com-
puter Program Design Specifications (CPDS) to prepare the system software

tests.

Testing is performed in the batch mode during the early stages of the implemen-
tation phase and in an interactive mode during later stages. There are four
levels of testing for AN/BQQ-6: implementation tust, independent software
integration, hardware/software integration test, and system design certifica-
tion test which is the final formal customer acceptance.

4.10.4 Verification and Validation

The verification and validation techniques used include:

a. A hardware simulator developed to drive the software.

b. A test data base or compool.

c. Functional testing performed from matrices of system functions.

4-15

! 4 .:

»"'•■ ■«""<'■—' ' > " ii ii m^^m^^^mmmm^mu . HH \ummmmmmmmmmmmmiimi***mmiifmmmmm'**m''">'" ^immmmmvimm

d. Three manual techniques employed ~ design validation, design verifi-
cation, and code verification.

e. Design simulation used for performance evaluation.

f. Top down testing. It enabled functions to be prepared In level 1,
levels 2, and partial package Increments to coincide with the pre-
liminary hardware development.

4.11 ENERGY MANAGEMENT SYSTEM (EMS) - HOUSTON, TEXAS

4.11.1 Project Overview

An energy management processing coatrol system for electric power plants Is
being developed in Houston. It is currently being used in Beaumont, Texas,
and Baton Rouge, Louisiana. The system is being developed and tested on
IBM System/370 and System/7 computers with special purpose consoles which
contain a conversational screen, keyboard, and color schematic screen.

4.11.2 SPT ComponentP

Structured programming technology components used on this project Include:

a. Structured programming in Assembler Language using structured pro-

gramming macro support

b. Program support libraries

c. Programming librarian.

4.11.3 Test Environment

The test plan provides for seven different test cells (hardware/software con-
figurations) for the IBM System/7 process control computers and four test
cells for the IBM S'fltem/370.

Three test teams, one for the IBM Sy8tem/370, and two for the System/7 com-
puters, verify each system function using a test script. These test scripts
are grouped into a test case covering the functions to be tested for a given
test cell. The results are tracked automatically. All testing is performed

interactively at the console by:

a. Generating the system (SYSGEN), linking in cards defining the system,
building the data base, and then starting the Sy8tem/370 Real Time
Operating System (SETOS).

4-16

<" ■" i ^«wiM«nMi^«n^wwmiiHiipifMPiiip«PHpniip^<mfP^« ' ■■ ■' ■ ■■ .■ ^w ^mmmmmr

) b. Running the test case for a given test cell by running as many test
scripts for the test case as possible In the time allotted, noting
results and discrepancies carefully. Discrepancies are tracked In

dally reports.

EMS uses four levels of testing. They are:

a. Unit testing within the system environment, monitoring the changes
as they are Included during the Implementation phase.

b. Integration testing In the IBM System/7 area.

c. System functional/performance testing during the latter stages of
the Implementation phase.

d. Acceptance testing with an IBM test team from General Systems
Division (System/7) and Data Processing Division (System/370) during
the evaluation phase.

4.11.4 Verification and Validation

The verification and validation techniques used Include:

a. A test data base generated to provide sample generator outputs and
transformer analog Input points. Operational data bases for EMS
will be prepared by each power company using It to adapt the system
to Its own equipment configuration and operating environment.

b. Functional testing where functions were specified and tested for
each of the different hardware and software configurations laid out
for the System/370 and System/7 computers.

c Design verification used on a limited basis.

d. Design simulation and performance monitoring used on a limited basis.

4-17

49-

i^M _- «■ «■ ■ llllW III ■ - - - ,

mmm ii i i ■W.MIIP"««HIIIIIIHIII w^^pwip^ man r-—-—— 1 " ■ '■'

) Section 5

STRUCTURED PROGRAM: ING TECHNOLOGY (SPT) IMPACT ON
VERIFICATION AND VALIDATION

;

5,1 INTRODUCTION

Most of the discussion presented In this section is based on analysis and
experience. Structured programming technology is still in its infancy, and
thus, conclusive statistical data is unavailable at this time. The following
is an initial attempt to relate structured programming experience obtained
from the literature and project surveys to software verification and valida-

tion.

Structured programming technology, described in Appendix B, has provldtd the
impetus for the Increased utilization of two verification techniques: UJ
top down programming and its associated computer based testing and (2) manual
based code verification. Neither technique is new. Top down programming is
a component of SPT, while code verification is usually associated with struc-
tured programming because of the following reason. Structured programming
has made programs easier to read. The reader can read top down structured
programs in a sequential systematic way, in order to follow the requirements
being implemented in the program. The reader of a top down structured program
doesn't have the problems of determining which branches or jumps to look for
first or how to keep track of various branches or Jumps that he has uncovered
during his reading process. These two techniques are further discussed in

subsection 5.2.

Structured programming technology has also had an effect or. some of the pre-
viously discussed verification and validation techniques. The effect on these

techniques is discussed in subsection 5.3.

5.2 TECHNIQUES ASSOCIATED WITH SPT

L

5.2.1 Top Down Programming

This technique is defined as performing in hierarchical sequence a detailed
design, code, integration, and test as concurrent operations. A detailed
description of this technique if presented In Appendix B.

Two authors' viewpoints on top down programming and the resultant top down

testing technique are presented below.

Dljkstra [A9] discusses the technique used in testing the THE multiprogramming
system. He suggests a system In a hierarchy of layers, each layer correspond-
ing to an abstraction of the same layer below. In this sense, each layer is
a new machine where the software of layer i transforms machine A(i) into
A(i+1). Each layer's instructions (operations) are interpreted by the machine

5-1

' i ii MI iu ^rrrr^mifmmmi^^m^mmmmim mnmmm1* '«*-' "• > ! ' ' •»■■v ■

1
on the next lower level. Each Instruction can be viewed as an abstraction of
the operat ons which executes it on the lower level. As each level of the
system ie completed, it is tested to force that level into "all relevant states"
(one may argue whether all relevant states are attained). Dijkstra contends
that by not viewing the system as a "black box" but rather a layered structure,
the set of relevant test cases is reduced to a manageable number. Consequent-
ly, if each level has been independently and exhaustively tested, when the
system is comp.ete, it can be assumed to be correct.

Mills [50] describes "systems of code" by generating a sequence of intermediate
systems of code and functional subspecifications so that at every step, each
system can be validated to be coi-rect (i.e., logically equivalent to its prede-
cessor system). He describes the initial systeiu as the functional specification
for the program, each intermediate systeta includes the code of its predecessor,
and the final system is the code of the program.

Mills concludes that the problem of proving the coirectness of any expansion
of a functional subspecificatio.i is reduced to proving the correctness of a
segment (i.e., a papJ of code with one entry at the top and one exit at the
bottom) in which, possibly, various named subspecifications exist. The verifi-
cation of a given segment requires a proof that the segment subspecification
is met by the code and named subs; jcifications. He further concludes that the
named subspecifications will be subsequently verified, possibly in terms of
even more detailed subspecifications, until segments with nothing but code

are reached and verified.

5.2.2 Use

The literature survey provided very few references to software development
efforts that used this technique. Six of the ten programming projects,
described in Section 4, used this computer based informal testing ttrhnique.
This technique is used exclusively during the system implementation phase of

a software development project.

5.2.3 Advantages

The advantages of this technique are:

The set of relevant test cases is reduced to a manageable number. a,

b,

d.

The effort required to produce drivers that pass data to modules
for testing is significantly decreased.

The software product is evolved to maintain the characteristic of

always being operable.

The quality of a program produced using this approach is increased,
as reflected in fewer errors in tbs coding process.

5-2

51 <

^mM^m

m**mmnmmm^m^mHm**w*mm.wmi^immmm*' < > > 'm*^*^mmmi^m*m mmmrnm ■ ■■■ mmm^M

e. Ths early r solution of module interfaces.

f. The computer testing time requirements are spread more evenly over

the development cycle.

5.2.A Disadvantages

The disadvantages of fcuis technique are:

a. The management problem of planning and controlling the coding and
testing prcc«-.3ses by not allowing developers to perform a large
number of independent activitiea in parallel.

b. Some modules cannot be completely tested until subordinate modules

are developed and are available.

5.2.2 Code Verification

5.2.2.1 Description

This technique Is defined as the examination or inspection of a computer program
for the main purposes of uncovering logic errors in the program design and
finding coding errors in the source code. Other terms used to describe this
technique or variations of this technique include code reading, program reading,
code review, design inspection, desk checking, walk-throughs, and structured
walk-throughs. Four approaches to the code verification techniques are pre-

sented below.

Mills [12] describes a technique for inspecting segment structured programs.^
This technique will be summarized under two headings: "reading instructions"

and "modes of inspections."

b.

Reading instructions

1. The reader should identify every basic control figure that

occurs in a program.

2. The reader should examine the proposition for each basic control

figure for its truth or falsity.

3. TVe reader should review the test patterns for the extent to
which they exercist text and for the results compared with

requirements.

Mode of inspections

1. The author of the program should begin the inspection with the
designing and writing of tne segment, so that program, proof,
and test patterns are developed Jointly rather than in sequence.

5-3

DÄ^

—J^^—

f*v*mmmmmmmmm 1,11 Il ■ i —

2. Programmers, already Involved In wr'tlng other segmenta if the
program, should read ancestor segments and test results to
understand the environment for the new segments. People assign-
ing new segments to others should raad these segments and tests
results, when completed, to verify their correctness. This
mode of reading should be a normal part of any program develop-
ment.

3. Programmers, outside the development team, should inspect the
program after the program is complete or concurrently with the
development. The advantage of this mode over (2) is the fewer
biases of the inspection teem. A disadvantage of this mode
over (1) is that the team may not understand the context of a
segment as well.

A structured walk-through is a generic mime given to a set of techniques (i.e.,
design validation, design verification, and code verification), each with differ-
ent objectives and each occurring at different times in the software development
cycle. Structured walk-throughs are described in [45] and [51]. Procedures,
associated with code verification, were extracted from these sources and are
presented under the headings of "characteristics of a walk-through," "items to
be reviewed," and "output from a walk-through."

.

a. Characteristics of a walk-through

1. It is arranged and scheduled by the developer (reviewee) of the
work product being reviewed.

2. Managemenc does not attend the walk-through and it is not used
as a basis for employee evaluation.

3. Prior to the walk-through, the participants (reviewers) are
given the review material and are expected to be familiar with
it.

A. The walk-through is structured so that all attendees know what
is to be accomplished and what role they are to play.

5. All technical members of the project team, from most senior to
most Junior, have their work reviewed.

6. A typical walk-through will include four to six people and will
last for a prespecified time usually one or two hours.

b. Items to be reviewed

1. Program specifications

2. Tesf preparations

3. Uncompiled source listings

4. Test results.

5-4

53<

— -

■' ■ ' ' - ' ' " ■■"
11 "' ' •immf^mi^mwyjmimmmmm mm*mm

c. Output from walk-through

1. A designated recording secretary records all the errors, dis-
crepancies, and inconsistencies that are uncovered during the

walk-through.

2, The recording secretary generates an official action list lor
the reviewee which is also used as a communication vehicle with

the rev'.ewers.

Fagan [29] presents an I2 design inspection that is used as a cede verification
technique after the first clean compilation of a program. His I2 design ^
inspection is summarized below under the three headings: inspection team,
"outline of the inspection procedure," and "examples of what to examine when
looking for errors." The inspection team and the outline of the inspection
procedure is similar to the T. design verification technique described in
paragraph 3.2.3.1. There are substantial differences, however, so the entire

description is given for both techniques.

a. Inspection Team

1. Moderator-The key person in jucc.ssful inspection. He need
not be a technical expert, but he must manage the inspection
team and offer leadership. He must use personal sensitivity,
tact, am' drive in balanced measures. His use of the strengths
of team members should produce a svnergistic effect larger than

their number. He is The Coach.

2. Designer-The programmer responsible for producing the program

design.

3. Coder/Implementor-The programmer responsible for coding the

design.

A. Tester-The programr r responsible for writing and/or executing
test cases or otherwise testing the product of the designer

and coder.

in the event that the coder of a piece of code also designed it. he will func-
tion in the cosigner role, and a programmer from some related or similar pro-

gram will perform the role of coder.

In -he event that the same person will design, coda, and test the product cede,
the coder role should be filled as described above. Another programmer, pre-
ferably with testing experience, should fill the role of tester.

b. Outline of the inspection procedure

1. Preparation (individual)-Participants, using the source code
listings, try to understand the implementation of the design.

5-5

5;

m

HI ■■.muaiiiiaimiiM HI i mm mmi r* ...,. !««... — ,..-., »- n, ia|ini^w^^m«<»L i m J " '«■'■' ><"* < < «'H

2. Inpsection (whole team)-The coder describes how he implemented
the design. Every piece of logic is covered at least once, and
every branch is taken at least once. The primary objective is
to find errors and not to redesign, evaluate alternate design
solutions, or find solutions to errors.

3. Follow-up-It is imperative that every issue, concern, and error
be entirely resolved at this level. Errors can be 10 to 100
times more exp .nsive to fix if found later in the process
(programmer tine only, machine time not included).

c. Examples of what to examine when looking for errors.

1. Test branch

(a) Is correct condition tested (If X = ON vs. If X - OFF)?

(b) Is the correct condition used for test (If X ■ ON vs.
If Y «= ON)?

(c) Are null THENs/ELSEs included as appropriate?

(d) Is each branch target correct?

(e) Is the most frequently exercised test leg the THEN clause9

2. For each interconnection call to either a macro, or another

module:

(a) Are all required parameters passed correctly?

(b) If register parameters are used, is the correct register
number specified?

(c) If interconnection is a macro, does the inline expansion

contain ail required code?

(d) Are there register or storage conflits between macro and

calling modules?

(e) If the interconnection returns, do all returned parameters

get processed correctly?

Another approach to code verification is a code review checklist used in the
training of new programmers at FSD of IBM [52]. The checklist is subdivided
into three categories: readability, program logic, and mechanics.

a. Readability

1. Is the program easily readable and understandable?

2. Are the standard indentation rules followed?

5-6

55<

1 ■ ■■"-» " ■'■" ■■ "" ■,M" ■■ ■••n"" i'"^-wwpw •wmmw*' '" ' ' " ■ <"i"i

,
3. Are names contextually urderstandable and useful?

A. Are there any additional comments?

5. Are additional comments needed?

6. Is the program properly segmented?

7. Are any explicit branch statements used?

If yee, are they justified?

8. DO any "DO Groups", begin blocks, or "IF Groups" extend over one

segment?

b. Program Logic

1. Is the logical approach valid?

2. Is the logical approach unnecessarily complex or confusing?

3. Is invalid input considered and handled?

4. Are all assumptions clearly stated?

c. Mechanics

1. Are there any syntax errors?

Is there any possible misuse or poor construction of instruc-

tions?

Are the conventions of writing instructions followed? That is,

one data item per line, no defaults taken.

Are the standard figures implemented properly (e.g.. case)?

2.

3.

4.

5.2.2.2 Use

The code verification technique is being used for several other purposes in

addition to its main purpose of finding errors. They include.

a Teaching aid-Junior programmers or programmers unacquainted «"* «h«
the system can gain eroerience in good programming practices or a

better understanding of the evolving system.

b. Management review aid-Management can gain an insight into the pro-
gress and problems that a programmer might be experiencing.

5-7

mimi

 _«__^- r--

The literature indicates that the major use of the code verification techni-
que has been for the purpose of find errors. Four of the ten programming
projects which are described in Section 4 used this technique for this pur-
pose. Fagan [29] describes the use of this technique on a wide basis with
excellent results. Several experiments on code verification are also described
in the literature. They Include: Yelowltz [39], Jellnski and Moranda [53],
and Corrlgan [30]. The first two reports describe code reading experiments
with the objectives of developing a basis for establishing the economics of
code reading as a means of testing. Corrlgan [30] describes the use of code
reading on the SIMON precompiler project. Although quantitative data from
the SIMON project is not presented, the code readers were convinced of the

utility and value of public code reading.

This is a manual based technique used primarily during the system implementa-

tion phase of a software development project.

5.2.2.3 Advantages

The advantages of this technique are:

The error rework cost decreases due to the early detection of errors. a.

b The quality of the software product is improved because in many
cases errors are found that would not be found during subsequent

computer based testing.

c. An increase in programmer productivity is achieved due to a positive
psychological effect that code verification has on programmers.

d. The use of the code verification technique as both a teaching and

management review aid.

e. The experience gained from code verification can be a valuable asset
during the computer based testing activities.

5.2.2.4 Disadvantages

The disadvantages of this technique are:

a The lack of enthusiasm by the people performing a code verification.
Code verifications are considered by some people to be tedious and
boring and one of the least desirable tasks performed by a program-

mer.

b. The use of the code verification technique in some application en-

vironments may not be cost effective.

5-8

57-

--

• u " — " " H" ' ■ "' > I

5.2.2.5 SPT Impact on Code Verification

SPT has directly affected code verification In several ways. They Include:

a. A Programming Support Library (PSL) makes developing code more
visible and accessible by providing hard copy listings that corre-
spond to the most current version of the system.

b. Top down programming (e.g., segmented code) and structured program-
ming (e.g., limited set of control figures and Indentation rules)
make code more readable and also make It possible to read someone
elaes code with greater ccmprehenslon.

c. A Program Design Language (PDL) provides a more standard means of
communication between designer and programmer, and thus, assists
the code verifier In understanding both the design and Its Implemen-
tation. The concepts of structured programming are applied to a
PDL In the form of basic control structured for logic flow and
Indentation. Top down programming Is Implemented by specifying In
PDL the top level portion of the program and evolving In the PDL
Into succeeding levels of detail. These two attributes of a PDL
provide a more natural relationship to programming languages than
traditional methods, thereby enhancing the code verification by
comparing the similar PDL statements with the source code.

Prior to the advent of structured programming, coding and segmentation stan-
dards were usually not enforced. The lack of enforcement of these standards
made code verification difficult, time consuming, and almost Impractical.
Because of the SPT benefit.* described previously and the additional benefit
of being able to read a program In a sequential, systematic way, code verifi-
cation Is evolving as a practical and cost effective verification technique.

5.J SPT IMPACT ON TECHNIQUES DESCRIBED IN SECTION 3.

There Is no discernible effect of SPT on three of the techniques utscrlbed In
Section 3. The three techniques are statistical prediction, design valida-
tion, and matrix analysis/problem statement languages. A fourth technique,
test data bases. Is affected only by the Programming Support Library (PSL) com-
ponent of SPT. A PSL, as described In Appendix B, provides capabilities for
storing and listing test data files. The other techniques described in Section
3 are more significantly affected by SPT. These effects are described in the
following paragraphs.

5.3.1 Drivers

SPT has a major impact on drivers. The major reasons for this positive impact
is due to using the top down programming technique which is described in
Appendix B. Several key points of Top down programming were abstracted from
that discussion and are presented below to aid in discussing the impact of SPT
on drivers. In the traditional software development project, the lowest level

-9 P

 _

■ •' !"■■ 1 ■ .■■UWWW^^BW

processing programs are coded first, unit tested, and made available for inte-
gration. Superfluous code in the form of drivers is needed to perform the unit
testing and lower levels of integration testing. In top down programming,
coding and testing are performed "top down" in execution sequence. This pro-
grananing technique minimizes the need for drivers, but does require the crea-
tion of stubs for subordinate segments of code which are to be replaced even-
tually with running code. These stubs, which will eventually be discarded,
may contain a "no operation" or possibly an output statement to show that
control has been received. Top down programming does not completely elimi-
nate the requirements for drivers since it might be difficult for a segment
to invoke certain "error" conditions or "unlikely to occur" situations in a
subordinate segnunt. However, the effort normally expended in writing stubs
and a few necessary drivers is considerably less than that required to pro-
duce all the drivers required for a traditional "bottom up" software develop-
ment effort. These stubs are also easier to write than drivers, since they
are operating much closer to the decision logic which they are to affect.

The PSL component of SPT also impacts this verification technique. The PSL,
described in Voiumes V and VI of the Structured Programming Series, will auto-
matically generate program stubs for segments of source rode which are id .nti-
fied in another segment of sout-.e code being added to the PSL and are not
currently stored in the PSL (i.e., have not yet beea coded). This capability
minimizes the effort required to write the stubs that replace the traditional

drivers.

5.3.2 Design Verification

The PDL component of SPT directly affects this technique. PDL is defined and
briefly descriLed in Appendix B and discussed in detail ia Volume VIII of the
Structured Programming Series. A program design language la intended HS a:

a. Vehicle to translate functional specification into program design.

b. Replacement for design logic flowcharts.

c. Means for communication between technical and nontechnical personnel,

designers, and developers.

The third intentt "means for communcating," enhances the reviewer's ability
to verify the program design because PDL's English-like and the semantical/
syntactical conventions minimize the ambiguities.

PDL has another impact on this technique. A formalized PDL which has syntax
and semantic rules could be analyzed by a computer program. This program
could automatically detect errors in the design and assist in program design
verification. Errors such as unused data items, data received too late for
use, and inconsistent use of data could be automatically identified.

The PSL component of SPT Indirectly affects this technique. A PSL makes the
program design move visible and accessible by providing the capabilities of
storing and listing the current version of the program design language state-

ments.

5-10

59<

■fl^MM^^M ■HMa^u—. M n ■ in A

■'' PSWUP^W" ''""-^ ' •^^^mmm^^W^mm^^ — ■*■

J
The other two components of SFT, structvred programming and top down program-
ming, provide minimal Impact on this technique through the use of the concept*
In the program design language.

5. Execution Analysis

The structured programming and PSL components of SPT Indirectly affect this
verification technique. Two functions performed by the tools using this tech-
nique, that are described In subsection 3.2.A, are: (1) monitoring coding
conventions, and (2) Identifying data paths and measuring data paths tested.

The PSL assists In the monitoring of coding conventions,
activities Include:

These monitoring

a. Flagging (I.e., Identifying on a listing) of all explicit branches
(e.g., GOTO statements).

b. Flagging program language source units that exceed a maximum size
to be defined by the user.

c. Flagging any lines of program source code that contain more than
one source statement (e.g., a line of code Is the equivalent of a
single punched card).

The structured programming component of SPT and more specifically the limited
number of control structures (i.e., four control structures are described in
Volume I of the Structured Programming Series) enhance the Identification of
data paths and measurement of data paths tested. Baker's [26] paper, on the
experience gained from the New York Times project, stated that "identification
of paths to be tested was greatly facilitated by the use of only those for-
malized control structures permitted by our structured programming conventions."

5.3.4 Autrmated Network or Path Analysis

The structured programming and top down programming components of SPT Indirectly
affect this technique. I', subsection 3.2.5, the technique description is sub-
divided into three processees: (1) source code analysis, (2) path and loop
generation, and (3) optimal p^th design. SPT impacts this technique in the
first process. Source code analysis includes determining:

a. The number and types of segments (i.e., the smallest set of con-
secutively executable statements to which control may be transferred
during program execution)

b. The segments to which each segment can transfer

c. The segment from which each segment is accessible

d. The type of branch expression ending a segment

5-11

mmmmmm^

IW^■■IW■ilPP■lP■■l■l»^■^"'■^""*^•^"l im..11.1 UM ■! !■■ ■•■ ■•■.■ Ill

e. Branch variables

f. Input variables

g. Output variables.

When using top down structured programming, the small limited number of con-
trol structures and the elimination of GOTO statements decrease the varia-
bility of segments and control between segments and thus facilitate the source
code analysis process. The limited number of control structures significantly
reduces the complexity of path analysis.

5.3.5 Functional Testing

Top down progranmlng and the PSL components of SPT Indirectly effect this tech-
nique. Functional testing, described in subsection 3.3.1, has the primary
purpose of vslidating that user requirements i>ave been correctly programmed.
Th« major characteristics of the technique are a rigorous definition of the
test plan, systematic control of the test effort, and an objective measure-
ment of the test coverage.

Top down programming, according to rlills [50], assists in the validation of
functional requirements by generating a sequence of intermediate "systems of
code" and functional subspecifications. At every step of the system develop-
ment effort, each system can be validated to be correct (i.e., logically
equivalent to its predecessor system). The "system of code" at each lev_l
of davelopment can be correlated and validated to the functional specifica-

tions.

The PSL facilitates the systematic control of the test effort, the second
major characteristic of functic-.al testing. The PSL provides capabilitlep .o
store and list test data. It also provides rapabilities to collect and n ort
statistics on test activities during the ev^ijation phase of a software

development project.

5.3.6 Design Simulation

The top down programming of SPT indirectly affects this technique, isi essen-
tial component of top down programming is the creation rf stubs as the pro-
gram evolves tcp down from a tree structure of segments. These stubs provide
the opportunity to simulate alternative approaches to unstable or xong range
reaulremencs or to simulate and evaluate system performance requirements.
Using the stubs for simulating function can assist in the earlier partial
implementation of requirements in complex unstable software applications.
If the system is evolved top down, it is always operable and able to satisfy
a subset of the system requirements. As the requirements become firm, the
stubs can be repxctced with operational code. Graham, Clancy Jr., ano DeVaney
[54] describe this approach in evaluating a software desigr They describe
a Design and Evaluation System. Their design evaluation approach is based
on the premises that the system being evaluated must be the t.ystem which is
being implemented, and the evaluation results must be available prior to the

entire system being operational.

61 <

 m

^mf^m^m^fmummi^^^^i^ntmu i n n^m^mmpm^v^fw^v-^n^ipmniniMn^ npi. Mpapwp

^

Appendix A

SOFTV f:E DEVELOPMENT CYCLE

A.l INTRODUCTION

The «oftware development cycle, as used throughout this report and shown In
Figure A-l, consists of four phases (2 through 5): definition, design. Imple-
mentation, and evaluation. Each of these four phases, which are similar to
the project development life cycle described In the DoD Manual A120.17-M, Is
defined In the following paragraphs. The deviations from this project develop-
ment life cycle and the one used throughout this report are the use of the
tenr "Implementation phase" In place of the term "programming phase" and slight
modifications to the functions performed during the design, Implwnentatlon,

and evaluation phases.

A.2 DEVELOPUHNT PHASES

A.2.1 System Definition

Software systems are generally defined by a set of system requirements. Natural-
ly, some systems definitions are much more complete, precise, and thorough than
others. This Is due to many factors such as complexity and experience. Usually
the collection of requirements Is performed by a small team whose work product
Is a document cnitalnlng an organized statement of requirements. The require-
ments document Is the baseline for further development and subsequent testing.

There are two major types of requirements: functional and performance.
Functional requirements describe the functions the system must perform (e.g.,
the systc-n rust accept 10 types of Input transactions and process these
against an online data base). Performance requirements specify the time and
space constraints which must be met (e.g., the sys^^m must be capable of
accepting as Input 1000 transactions every minute frr a 10-hour period and
It must be capable of processing Input transactions at a rate of 30,000 per
hour for a 20-hour period).

Requirements are generally expressed In narrative, although other vehicles
for expression which offer advantages of computablllty are available for use.

A.2.2 System Design

Following the definition phase, a design phase is p.enerally necessary. If the
project Is relatively simple or very small, a separate formal design phase
may not be required.

System design 1» concerned with all phases of the system: hardware, software,
and Internal and external user procedures.

A-l

~ — ■ J

■"" "ll1 ■M— —' 1 m ■-»■■■■■■•i ""■'■i ■ ^

Initiation Development Evaluation Operation

Initiation Definition Design Implementation
System Test,
Installation Maintenance

Revised
Operation

1 2 3 4 5 6 7

Figure A-l. Project Development Cycle

The activity during this period is directed toward producing a design which
when implemented will result in a system that satisfies all functional and
performance requirements. The products of this phase are system specfications
system test plans, cost estimates, and implementation plans.

A.2.3 System Implementation

System implementation includes the expansion of system specifications to enable
the detailed design, build, and test of system software. The software archi-
tecture and functional specifications developed during either the definition
or design phase are expanded, coded, and executed on real or simulated hard-
ware.

A.2.4 System Evaluation

After the system is built, it is tested for conformity to system specifications,
requirements, and usability. The ultimate result of thif, phase is the valida-
tion of the system by the personnel who rtqueste^ its development.

A.2.5 Relationship of Phases

The previous discussion is not intended to convey the impression that each
phase of the system development is an independent activity. The reality is
that they are not independent, discrete sequential processes. There are many
facr.ors causing their overlap, including errors, omissions, changes, and fund-
mg profiles.

A-2

 ■»■■"■ m ii i ■ ii ii

)
Appendix B

STRUCTURED PROGRAMMING TECHNOLOGY FUNDAMENTALS

B.l INTRODUCTION

Structured programming practice has provided the Impetus for an Improved
programming development technology. One of the first Implementations utilized:

o Top Down Structured Programming

o Programming Support Libraries

o Chief Programmer Team Operations

Top down structured programming Includss the two Interrelated concepts of
structured programnlns and top down programming. Structured progrananlng has
a firm theoretical base In the structure theorem. A programming support
library Is a useful tool that serves as a repository for project data. A
chief programmer team Is an organizational approach for the development of

software.

Ea-h of these techniques can be utilized Independently of the others, but there
are dependence relationships. For example, the chief programmer MM technique
calls for the reading of the program source coda. Program source code is
generally quite difficult to read if it is not well organized and structured.

A second dependency can exist between top down programming and program support
libraries. The nesting of small segments of codt within other such segments
as required by top down programming is best accomplished by compiler directives
(e.g., INCLUDE or COPY). This Implies the existence of a programming support

library.

Shortly after the introduction of these techniques for production projramiaing,
the idea waa Introduced cf expressing design in pidgin English using the Ideas
of top down structured programming. This technique wr.s callted program deuign

language (PDL).

These technologies themselves are to an extant in a refinement stage; while the
principles have been demonstrated, the details of implementation are still
being improved. Additional techniques are being developed and associated
with structured programming technology. For example. Hierarchy Input Process
Output (HIPO) is a technique originally conctdved as a program documentation
tool. Later it was utilized ir. the expressitn of progr im specifications. HIPO
was studied in Task 4.1.8 as a candidate for specification and/or design expres-
sion (refer to "Program Design Study," Volume VIII of tne Structured Programming
Series) and used in Task 4.1.6 (refer to "Programming Support Library Program
Specificat.ons," Volume VI of the Structured Programming S»ries).

B-l

MBKB

■PWll»fflpiiHPPiKW"iwpiiWW"PPiB^p«i^pww«wp"w»p i *^^mmmm^mmmmmmimi^m**m—^wv^*^'~i

The term "Structureu Programming Technology' will be used to collectively

reference the following:

o Top Down Structured Programming

o Programming Support Library

o Progran Design Language.

B.2 TOP DOWN STRUCTURED PROGRAMMING

Structured programming technology has its origins in structured programming,
a method of writing programs based on a mathematically proven theorem. The
application of this theorem results in simpler, more maintainable programs
because it reduces the mmber of logic structures which programmers use for
writing programs. A separate technique, which bas become an integral part
of this technology, is top down programming. This is a prograc development
technique which results in a high degree of segmentation and permits the detailed
design, production, and integration of the source program code to proceed in

parallel.

The term top down structured programming is used to refer to that part of the
technology which consists of the integrated use of both techniques.

B.2.1 Structured Programming

Structured programming (SP) is based on the mathematically proven Structure
Theorem, due to the original form by Böhm and Jacopini [55, 56] which states
that any proper program (e.g., a program with one entry and one exit) is equi-
valent to a program that contains as logic structures only:

o Sequence of two or more operations

o Conditional branch to one of two operations and return (IF a THEN

b ELSE c)

o Repetition of an operation (DO WHIL2 p).

Each of the three figures it», elf represents a proper program. A large and
complex program may then be developed by the appropriate sequencing and nesting
of these three basic figures. The logic flow tf such a program always proceeds
from the beginning to the e"'" ithout arbitrary branching. When only these
structures are used in the ogramming, there are no unconditional branches or
statemei t labels to which to branch.

B-2

35<

I

tm^- mmm^^^*^^m^^^m^*m i iniai ii^^^mmtm^m^i^^mmmmfmmmmmim

Structured prograonlng reduces the arrangement of the program logic to e
process similar to that tound in engineering where Joglc circuits ere con-
structed from a basic set of figures. As such, It represents a standard
based on a solid theoretical foundation. It does not require ad hoc Justifi-
cation case by case In actual practice.

Several other practloes are Included as a tupportlng p«rt of the technique.
For example, strict attention Is paid to the Indentation of the logic structures
on the printed psge so r.hat logical relationships in the coding correspond to
physical position on the listing. Thus, a pictorial representation of the
logic is gained from the indentation. Another practice is that of segmenting
code into reasonable amounts of logic that are each easily understood. Each
segment of code (whose internal operations may be any combination of the basic
logic structures) must itself represent one of the basic logic structures.
Thus, each code segment becomes a logical entity to be analyzed, coded, and

read at one time.

Two extensions to the three basic logic structures (DOUNTIL and CASE) have
been defined, to Improve readability of source code. These do not affect
the spirit of structured prograimnin^, and in some cases may result in more
efficient use of computer time and storage. DOUNTIL provides an alternate
form of looping structure. It differs from DOWHILE in that the condition
is tested after the operation rather than before. CASE is a multlbranch,
multijoin conti.1 structure used to express the processing of one of many

possible cases.

B.2.<: Use of Subroutines

While the use of the control logic figures eliminates the necessity of writing
any explicit branch or GOTO statements (except for simulation purpose-'), it
is not intended to preclude the use of CALL/RETURN logic to invoke subroutines.
In fact, such subroutine linkages are an essential feature of top down struc-
tured programming and their m.e is encouraged.

B.2.3 Top Down I'rogramming

Traditional software development has evolved as a bottom up procedure where
the lowest le\el of processing programs are coded firwt, unit tested, and made
ready for integration. Superfluous code in the form of driver programs is
needed to perform the unit testing and lower levels of integration testing.
In addition. Internally fomatted data has to be prepared manually and results
must be checked manually. Driver and data preparation plus checking of results
can easily equal the effort expended in preparation of the deliverable programs.
Data definitions end Interfaces tend to be simultaneously defined by more then
one person snd often are inconsistent. During integration, definition problems

are recognized.

Integration is delayed while the data definitions and Interfaces are defined
consistently Anl the processing programs are reworked (and unit tested again)

B-3

h^BB.

^ " ' ■ ■" —■ — '■■ ■■ 1- mrr 1

to accommodate the changes. It is often difficult to isolate e problem during
the traditional integration cycle because of the large number of possibls
sources of error. Kenr^^ment control often is ineffective during much of the
traditional development cycle because even though the units era visible, there
is no certainty they are correct in terms of Interfaces with other such units
until integxation test. Top down programming is patterned after the natural
spprosch to system design and requires that programming proceed from developing
the control srchitecture (interface) statements and initial data definitions
downward to developing and integrsting the functional units. Top down program-
ming is sn ordering of program development which allows for continual inte-
gration of program parts as they are developed and provides for interfaces
prior to the parts being developed. At each stage, the code already tested
drives the new c~de, end only external data is required.

In top down programming, the program is organized into a tree structure of
segments. The top segment contains the highest level of control logic and
decisions within the program, and either passes control to next level segments,
or identifies next level segments for in-line inclusions. The next level
segments are called stubs and those which are to be replaced eventually witb
running code may contain a " \o operation" instruction or possibly a (''^play
statement to the effect that control had been received. While it is recognized
that such code as with drivers is also eventually discarded, the effort Involved
in writing such statements is less than that required to produce and pass data
to a module for unit testing. The process of replacement of successIvel;
lower level stubs with processing code continues for as many levels as are
required until all functions within a program are defined in executable code.

Many system interfaces occur through the data base definition in addition to
calling sequence parameters within Individual programs. Top down programming
requires chat sufficient data base definition statements be coded and that
data records be generated before exercising any segment which references them.
Ideally, this leads to a single set of definitions serving all programs in a
given application.

This approach provides the ability to evo ve the product in a manner that
maintains the caaracteristics of always being operable, extremely modular,
and always available for successive levels of testing that accompany the
corresponding levels of implementaticn. The quality of a program preduced
using this arproach is increased, as reflected in fewer errors in the coding
process. The act of structuring the logic calls for more forethought, and
the uniformity and single entry, single exit attribute of the structured code
itself contribute to the reduction in errors.

Because of the segmented nature of top down programming, the resulting program
is extremely modular in function and logic structure, minimizing the effect
of requirement changes on already-developed code.

Conceptually, top down programming proceeds from a single starting point,
while conventional implementation proceeds from as many starting points as
modules in the design. The single starting point does not imply that the
implementation must proceed down the hierarchy in parallel. Some branches
Intentionally will be developed earlier than other b-anches. For example,
user or other external interfaces might be developed to permit early training

67
B-A

mmm mm

UM •—'"■"" '■ " immmmmm ■>' ■■ i» II i -i —-^

)
or hardware/software integration. Also, In many applications, requirements
will become firm in cartain araas before others. The araaa covarad by knovn
requlremants can usually become operational while the requirements are being
developed for the others. Some segments, intended to support long-range
requirements, may remain after the program is fully operational to serve ss
guides.

B.3 PROGRAMMING SUPPORT LIBRARY

A Programming Support Library (PSL) serves as a repository for data necessary
for the orderly development of computer programs using structured programninp
technology. The data exists in two forms:

o Data stored in machine readable form accessible by the computer

o Corresponding data stored in hardcopy (huoan readable) form in
project notebooks.

Included with a PSL are the necessary computer and office piocedures for
manipulating this data.

The purpose of a PSL is to support the program development process. This
involves the support of the actual programming process and the management
of the process.

Support of the programming process Involves support of the design, coding,
testing, documentation, and maintenance of computer programs and the associated
data base definitions. A PSL provides this support through:

o Storage and maintenance of programming data

o Output of programming date and related control data

o Support of the compilation and testing of programs

o Support of the generation of program documentation.

A PSL must also provide some means of generating and maintaining itself.

Support of the programming management proceo.) al&o involves the storage and
output cf programming data. In addition, it involves:

o Collection and reporting of management data related to program
development

o Control over the integrity and security of the data store1 in the
PSL

o Seperation of the clerical activity related to the programming
proceaa.

B-5

■ ■ - - _

wmm-i m I w» ., _ , , ,.,. ,

A PSL supports a\ approach in which people work on a comnon, visible product
rather than on Independent pieces. The programmers communicate through this
product In carrying out programming and clerical Interface activities. A
PSL permits a programmer to exercise a wider span of detailed control and
reduces explicit communication requirements. This makes It easier no bring
new personnel onboard and to shift programmers from one part cf the project
to another. It also minimizes the preparation effort for technical audits.
A secretary/librarian Is responsible for maintaining the notebooks end archives
of the PSL, and the programmers are responsible for their contents. This
structure of responsibility permits standardization in project recordkeeping
:nd ensures that the hardcopy listings in the library correspond to the most
current version of the syitem.

A PSL system has four components:

a. Internal libraries

b. External libraries

c. Computer procedures

d. Office procedures.

The components of the system are interlocked to establish an exact correspon-
dence between the internal (computer readable) and the external (programmer
readable) versions of the developing system. This continuous correspondence
is the characteristic of a PSL that guarantees ongoing visibility of the

developing system.

Different implementation^ of a PSL exist for various computer and operating
system environments used in byatem development. The fundamental correspon-
dence between the Internal and external libraries in each environment is
established by the PSL office and computer procedures. The office procedures
are specified at a detailed level so that the format of the external libraries
will be standard across programming projects, and the maintenance of both
internal and external libraries can be accomplißhed as a clerical function.
The PSL computer procedures for each are expresuly designed for easy invoca-
tion by secretary/librarian personnel so that their use is nearly fail-safe.
A PSL is further discussed in Volumes V and VI of the Structured Programming

Series.

B.4 PROGRAM DESIGN LANGUAGE

Top down structured programming concepts are now being extended to Include
the design of programs to be developed. Traditionally, narrative descriptions,
decision tables, and flowcharts have been used in describing the design of a
software system. These techniques are in the process of being supplanted by
program design languages which are intended as a:

B-6

fSk*

■i

■UffBwiwimnwmm •m^mmmr^rr^^mK-^Hif^^ "i »II.III imwvi '■•"■^■■^•iwwwwpwni^pww^B^iw-T-^ ~imm*^i^mmw*n

■

o Vehicle to translate functional specifications Into program design

o Replacement for design logic flowcharts

o Means for communication between technical and nontechnical person-
nel, designers, and developers.

An additional benefit Is that a PDL has a more natural relationship to program-
ming languages than traditional methods thereby facilitating the mapping of
function Into eodft.

PDLs, as currently practiced, are English-like and usually follow some seman-
tical and syntactical conventions. The concepts of structured programming
are applied In the form of basic control structures for logic flow and Indenta-
tion. Top down programming Is Implemented by specifying In PDL the top level
portion of the program and evolving the PDL Into succeeding levels of detail.
Considerable choices are left to the programmer In the selection of predicate
and function descriptions which may be English statements In the computer
language to be used for Implementation or stme combination.

The advantage of flowcharts and decision tables over straight prose Is that
the flowcharts and tables take advantage of two dimensions to show Inter-
relationships which are obscure In the linear medium of prose.

A PDL Is two-dimensional prose (three. If one counts segmentation) without
the constraints of fixed-size boxes or table-entries. It can thus show the
same Interrelationships as the flowcharts In a clearer manner.

If used In the design phase, a PDL provides technical communication betwee-i
designer and programmer. If used during Implementation, verification for
completeness and correctness Is enhanced. At any level of the evolving pro-
gram, design review and verification can be completed prior to commitment to
source code. PDL Is further discussed In Volume VIII of the Structured Pro-
gramming Series.

B.5 DEFINITIONS

For this report, the following definitions will apply:

Program Design Language (PDL) — A textual, English-like language describing
the control structure and general organization of a computer program. The
purpose of this tool Is to facilitate the translation of functional specifi-
cations Into computer Instructions.

Programming Support Library (PSL) — A repository for data necessary for the
orderly development of computer programs using structured frogrammlng tech-
nology. The data repository Is In two forms: data stored In machine readable
form accessible by the computer and the Idexitlcal data stored In hard copy form
In project notebooks. A PSL also Includes the necessary computer and office
procedures for manipulating this data.

B-7

warn

inp»»pppp»w~^ "M iiui.iiii"™^>»i^^wwii»»im»wpwnpw^wjTW"«Pi""^^^"—^•••■w«^™"" ■•■«■ "■ ' I i iifm^^^^mmmmmf

Structured program — A program consuructed cf a basic set of control logic
figures which provide at least the following: sequence -f two operations,
conditional branch to one of two operations and return repetition of an
operation. A structured program ha« only one entry and one exit point. In
addition, a path will exist from the entry to each node an< from each node to
the »xit.

Structured Programming (SP) — The process of developing structured programs.
Associated with structured programming are certain practices such as Indenta-
tions of source code to represent logic levels, the use of Intelligent data
names, and descriptive commentary.

Structured Programming Technology (SPT) — A term which collectively references
the followlug list:

o Program Design Language (PDL) concepts

o Progranmlng Support Library (PSL)

o Top Down Structured Progranmlng (TDSP)

Structured segment — A logically complete set of executable Instructions
constructed of nested structured programming figures. In addition to or in
place of executable instructions, a structured segment may include nonexecutable
Instructions such as data declarations and descriptive commentary.

Structured source code listing ~ A listing comprised of the following sections:

o Section 1 contains the first executable structured segment (commonly
referred to as the top level segment) as coded in the source pro-
gramming language.

o Section 2 contains all remaining structured segments. The struc-
tured segments are alphabetized by name. As in Section 1, each
structured segment is represented as coded in the source program-
ming language.

o Section 3 contains the executing sequence among the structured
segments.

Top Down Programming (TDP) — The concept of performing in hierarchical sequence
a detailed design, code, integration and test as concurrent operations.

Top down structured program ~ A structvr-d program with the additional char-
acteristics of the source code being logically, but not necessarily physically,
segmented in a hierarrhical manner and only dependent on code already written.
Control of execution between segments is restricted to transfers between adja-
cent hierarchical segments.

B-8

71 <

__.

ipniniimiip. ****-- -"• uai.ii. ■ •■ vv^n-^pw

Top Down Structured progranming (TDSP) ~ The process of developing top down
structured programs. Associated with top down structured programming are
certain practices such as indentations of source code to rerresent logic levels,
the use of intelligent data names and descriptive commentary. Top down struc-
tured programming requires top down programming as the primary implementation

meth3aology.

B-9

r

I.
,-_

^^^*m^mm**m ■ i • II IM iiwiti mi tm ■ »i 11 ■ ■—T"" — " ' ' «

REFERENCES

1 Gruenberaer F "Program Testing: The Historical Perspective," Comruter
l' ?rogfa"?es; M^hods lymposiu«. J«. 21-23. 1972. Pronrain Test Methods.

Prentice-Hall Inc., pp 7-10.

2 Hetzel W. C, "A Definitional Framework," Computer Program Test Methods
S^posium; J^e 21-23, 1972. gggg Test Methods, Prentice-Hall Inc.,

pp 7-10.

•^ Kina J "A Verifying Compiler," Courant Computer Science Symposium 1,
jiS^July j* I»™ — nn^n I^^aagi IS igg SV8tem8' ^entice-
Hall Inc., pp 17-40.

4. Good, D. I.. "Provable Programs and Processors," National Computer Con-

ference, 1974, pp 357-363.

5, Good, D. I., London, R. L., Blodsoe, W. W., "An Interactive Program
Verification E stem," October 1974, pp 1-26.

D c Fianas B Levitt. K. N., "SELECT — A System for Testing

Stanford Research Inetitute, Menlo Park, California 9-025, October 197«,

pp 1-46.

„ . . T u«^ p r "Formal Specifications for Solutions to Syn-
'• SSSSiiii'lSw ^uUHcleLe Oroop, Stanford Reaearch Inatl-

tute, Menlo Park, California 94025.

8. Reifer, D. J., "Computer Program Verification/Validation/Certification,"
Technology Division of tae Aerospace Corporation, TOR-0074 (4112) 5,

May 1974, pp 1-36.

9. Keirstead, R. E., Parker, D. B., "On the Feasibility of Formal Certifi-
cation," Computer Program Test Methods Symposium, June 21-23, 1971,
Prn^ram Test Methods, Prentice-Hall Inc., pp 291-301.

10. LaPodula, L. J., "Reliability Modeling and Measurement," MITRE Corp.,

TR 2468, June 1973, pp 1-82.

11 Mills H. D., "The Complexity of Programs." Computer Program Test Methods
S^ium. J^ne 21-23. 1972, PgCg Test Methods, Prentice-Hall Inc.,

pp 225-238.

12 Mills H D. "On the Development of Large Reliable Progiams." IEEE
fwosL ^Computer Software Reliability, April 1973, pp 155-159.

13. Schneiderwind, N. F., "An Approach to Software Reliability ***££
and Quality Control," Naval Postgraduate School, Monterey, California.
Fall Joint Computer Conference, 1972, pp 837-847.

C-l

7~

^MU m^ - -

i .1 ■.•■.■.■«■jmiiii pun. ,] r'-m NpmnmwnwHM m,:.mmm-im i, i ii pin i r w» ■^rmm^gpmmtfi^'-~*mmmm ipn.i

14. TRW, "Software Reliability Study," Interim Technical Report, 74-2260.1.9-29,
June 1974.

15. Sullivan, J. E., "Measuring the Complexity of Computer Software," MITLE
Corp. TR 2648, June 1973, pp 1-41.

16. Brown, J. R., DeSalvio, A. J., Heine, D. £., Pu.-day, J. G., "Auto-uated
Software Quality Assurance," Computer Program Test Methods Symposium,
June 21-23, 1972, Prograr Test Methods, Prentice-Hall Inc., pp 181-203.

17. Keezer, E. I., "Practical Experiences in Establishing Software Quality
Assurance," IEEE Symposium on Computer Software Reliability, April 1973,
pp 132-135.

18. Hetzel, W. C, "Principles of Computer Program Testing," Computer Program
Test Methods Symposium, June 21-23, 1972, Program Test Methods, Prentice-
Hall Inc., pp 7-10.

19. Merten, A. Teichroew, D., "The Impact of Problem Statement Languages on
Evaluating and Improving Software Performance," The University of Michi-
gan, Ann Arbor, Michigan, Proceedings from the Fall Joint Computer Con-
ference, lf'72, pp 849-857.

20. Baird, G. N., "The DoD COBOL Compiler Validation System," Proceedings
fiom the Fall Joint Computer Conference, 1972, pp 819-827.

21. Brown, J. R., Hoffm. a, R. H., "A Survey of Vechniques and Automated Tools,"
TRW Systems, May 1972, pp 1-20.

22. Goldstein, A., Goldstein, E. C, Sapiro, A. J., "TMGr' - Test Matrix
Generating Program," TR 00.2353, IBM, August 1972, pp 1-20.

23. Hanford, K. vr., "Automatic Generation of Test Cases," IBM Systems Journal,
No. 4, 1970, pp 242-256.

24. Kosy, D. W., "Air Force Command and Control I.iformation Processing in
the igSO's: Trend in Software Technology," Rand Corptration, R-1012-PR,
Santa Monica, California, June 1974, pp 1-177.

25. Modern Data, "Survey of Program Packages - Programming Aids," March 1970,
pp 62-72.

26. Baker, F. T., "Systen Quality Through Structured Programming," AFIPS
Conference Proceedings, Volume 41, Part 1, 1972 Fall Joint Computer
Conference, pp 339-343.

27. Graham, R. B., Waunid, C. K., "A Survey of Syrtems and Techniques, Testing
Validation of Complex, Interactive Applications," IRAD Task 1 Report,
IBM Houston, 1974, pp 1-44.

28. Buckley, F. J., "Software Testing - A Report from the Field," IEEE Sympo-
sium on Computer Software Reliability, April 1973, pp 102-106.

C-2

7-1 <

MMMEMMMH m*m

W~' mm^m v^mmmmmm—mmm* " '■■'■—■

)
29. Fagan, M. E., "Design and Code Inspections and Process Control In the

Development of Programs," TR 21.572, ID.: System Development Division,
December 1974, p^ 1-35.

30. Corrigan, A. E., "Results of an Experiment in the Application of Software
Quality Principles," MTR-2874 (Volume III), June 30, 1974, pp 1-91.

31. Scherr, A. L., "Developing and Testing a Large Programming System - OS/360
Time Sharing Option." Computer Program Test Methods Symposium, June 21-23,
1972, Program Test Methods. Prentice-K.iU Inc., pp 165-180.

32. Stucki, L. C, "A Prototype Automatic Program Testing Tool," McDonald
Douglas Astronautics Company, Huntington Beach, Ctlifomia, Fall Joint
Computer Conference, 1972, pp 829-836.

33. Stucki, L. G., "Automated Tools and Techniques Assisting in Software
Development," McDonald Douglas Astronautics Company, 1973, pp 1-25.

34. Stucki, L. G., "Automatic Generation of Self-Metric Software," IEEE
Symposium on Computer Software Reliability, April 1973, pp 94-100.

35. Stucki, L. G., Foshie, G. L., "New Assertion Concepts for Self-Metric
Software Validation," McDonald Douglas Astronautics Company - West,
WD2505, March 1975, pp 1-13.

36. Nelson, E. C, "A Statistical Basis for Software Reliability Assessment,"
TRW-SS-73-03, March 197\ pp 1-9.

37. Krause, K. VJ., Smith, R. W., TRW Systems, Houston, Texas, and Goodwin,
M. A., Johnson Space Center, Houston, Texas, "Optimal Software Test Plan-
ning through Automated Network Analysis," pp 18-32.

38. Mills, H. D., "On the Statistical Validation of Computer Programs," FSC
72-6015, IBM pp 1-11.

39. Yelowitz, L., "Progress Report - Project No. 306 (Program Validation),"
July 1973, pp 1-51.

40. Elmendorf, W. R., "Disciplined Sof^vare Testing," Courant Computer Science
Symposium 1, June 29-July 1, 1970, Debugging Techniques in Large Systems.
Prei tice-Hall Inc., pp 137-139.

41. Freeman, P., "Functional Programming Testing and Machines Aids," Computer
Program Test Methods Symposium June 21-23, 1972, Program Test Methods.
Prentice-Hall Inc., pp 41-47.

42. Drummond, M. E. Jr., "Simulation Techniques," Evaluation and Measurement
Techniques for Digital Computer Systems. Prentice-Hall Inc., 1973, pp
145-201.

43. Stanley, W. I., Hertel, H. F., "Statistics Gathering and Simulation for
the Apollo Real-1 me Operating System," IBM Systems Journal, Volume 7,
November 2, 196C- pp 8-15.

.M

mmmmmnm *"■ wmmmrm — '

44. Department of the Army, "Management Information Systems - Policies, Objec-
tives, Procedures, and Responsibilities," Aruv Regulation AR 18-1, pp 2-2
through 2-16.

45. IBM "Programming Project Management Guide," IBM Data Processing Techniques
Manual - GA36-0005-1, 1974.

46. Head, R. 0., "Automated System Analysis," Datamation, August 15, 1971,
pp 22-24.

47. Martin, D. B., "Coding Hints for Large Systems," IBM TR00.1968, December
1969.

48. Green, J. H., "Coding Techniques for Virtual Memory, IBM, TR00.2232,
June 1972.

49. Dijkstra, E. W., "The Structure of The Multiprogramming Systet," Com-
munication of the ACM. Volume II, No. 5, May 1968, pp 84-88.

50. Mills, H. D., "Top Down Programming in Large Systems," Courant Computer
Science Symposium 1, June 29-July 1, 1970, Debugging Techniques in
Large Systems, Prentice-Hall Inc., pp 41-55.

51. IBM, "Structured Walk-throughs: A Project Management Tool," DaM Proces-
sing Division, August 1973, pp 7-10.

52. IBM, "FSD Basic Programmer Training Guide "

53. Jelinski, Z., Moranda, P. B., "Application of a Probability - Based Model
to a Code Reading Experiment," IEEE Symposium on Computer Software Reli-
ability, April 1973, pp 78-81.

54. Graham, R. M., Clancy, G. J. Sr., DeVaney, D. B., "A Software Design and
Evaluation Systems," Communication of the ACM. Volume 16, Number 2,
February 1973, pp 110-116.

55. Böhm, C, Jacopini, G., "Flow Diagrams, Turing Machines, and Languages
with Only Two Formation Rules," Communications of the Association for
Computing Machinery, Volume 9, No. ' v 1966,

J6. Mills, H. D., "Mathematical Foundations for Structured Programming,"
IBM Corp., FSD 72-6012, February 1972.

C-4

76<

mmmmmmmmmmmmimmmim-^mummmu •nuni« '-■ —wm mi ■■ W-PW^^HH I^ • I m n

BIBLIOGRAFilY

Bell, T. E., "Objectives and Problems In Simulating Computers," AFIPS Conference
Proceedings, Volume Al, Part 1, 1972 Fall Joint Computer Conference, pp 287-297.

enson, J. P., "Structured Programming Techniques," IEEE Symposium on Computer
Software Reliability, April 1973, pp 143-147.

Boehm, B. W., "Software Design and Structuring," TRW Systems, 19/-, n 1-24.

Boehm, B. W., "Software Reliability and Software Erroi Models," TIN Systems,
1973, pp 1-10.

Davis, R. M., "Quality Schwäre Can Change the Computer Industry," Conputax
Program Test Methods Symposium, June 21-23, 1972, Program Test Methods, Prentice-
Hall Inc., pp ?03-311.

General Research Corporation, "RXVP: An Automated Verification System for
FORTRAN," February 1975, pp 1-16.

Gruenberger, F., "Program Testing and Validacion," Datamation, July 1968,
pp 39-47.

Holland, J. G., "Acceptance Testing for Application Programs," Computer Program
Test Methods Symposium, June 21-23, 1972, Program Test Methods, 'ren'^ice-Hall
Inc., pp 263-274.

Howard, J. H., Alexander, W. P., "Analyzing Sequences of Operations Performed
by Programs," Computer Program Test Methorls Symposium, June 21-23, 1972,
Program Test Methods, Prentice-Hall Inc., pp 239-254.

IBM, "Space Lab - Software Development and Integration Concepts Study Report,"
October 1973, pp 2-4 through 2-11.

Itoh, D., Izutani, T., "FADEBUG-I, A New Tool for Program Debugging," IEEE
Symposium on Computer Software Reliability, April 1973, pp 38-43.

Kosy, D. W., "Approaches To Improved Program Validation Through Programming
Language Design," AD-751 826, Rand Corporation, Santa Monica, California,
July 1972, pp 1-25.

Kulsrud, H. I., "Extending the Interactive Debugging System - HELPER," Courant
Computer Science Symposium 1, June 29-July 1, 1970, Debugging Techniques
in Lar^e Systems, Prentice-Hall Inc., pp 77-91.

Lindfors, R. S., "Design Validation Overview, Systems Programming and Analysis,"
IBM FSD Houston, 1973, pp 1-69.

Mills, H. D., "How to Write Correct Programs and Know It," IBM, FSC 73-5008,
1973, pp 1-26.

D-l

/ r*

UMMi

^^^m^mmmmmmmmm^^^mmmmmmimmmmmmmimmt < ,«m<nimmmm» •^'^^mm^^^mmmmmmmmimmmm^^^^^^^mmmfs^

Mills, H. D., "Reading t.ograms as a Managerial Activity," working paper,

March 1972, pp 1-10.

Myers, G. J., "Composite Design: The Design of M;iular Programs," IBM TR00.2A06,

January 1973.

Naughton, J. J., "An Application Development," working paper, January 1973,

pp 1-13.

Vg, E. W., "Mathematical Software Testing Activities," Computer Program Test
Methods Symposium, June 21-23, 1972, Program Test Methods. Prentice-Hall Inc.,

pp 135-141.

Paige, M. R., Balkovich, E. E., "On Tftsting Programs," General Kestirch
Corporation, Santa Barbara, California, IEEE Symnosium on Computer Software

Reliability, April 1973, pp 23-27.

Prokop, J. S., "On Proving the Correctness of Computer Irograms," Computer
Progrtm Test Methods Symposium, June 21-23, 1972, Program Test Methods, Pren-

tice-Hall Tnc, pp 29-37.

Ramamoorthy, C. V., Meeker, R. E. Jr., Turner, J., "Design and Construction
of an Automated Software Evaluation System," IEEE Symposium on Computer
Software Reliability, April 1973, pp 28-37.

Reifer, D. J., "Interim Report on the Aids Inventory Project," Technolcgy
Division of the Aerospace Corporation, SAMSO-TR-75-e, 1975, pp 1-68.

Rubey, R. J., "New Approaches for Software Validation," Naecon 72 Record,

1972, pp 252-257.

Supnik, R. M., "Debugging Under Simulation," Courant Computer Science
Symposium 1, June 29-July 1, 1970, Debugging Techniques in Large Systems,
Prentice-Hall Inc., pp 117-136.

VanNoot, T. J., "System Testing - Taboo Subject," Datamation, December 15» 1971,
pp 61-64.

Vyssotsky, V. A., "Common Sense in Designing Testable Software," Computer
Program Test Methods Symposium, June 21-23, 1972 Program Test Methods, Pren-
tice-Hall Inc., pp 41-47.

Writtenbrook, W. K., "Testing a PL/I Structured Program," IBM, TR 54.041,
December 1973, pp 1-10.

Wulf, W. A., "ALPHARD: Toward a Language to Support St "uctured Programs,"
Carnegie-Mellon University, Pittsbrrgh, Penna, April 1974, pp 1-17.

Yelowitz, L., "A Symmetric Top Down Structured Approach to Computer Program/
Project Development," IBM, FSC 73-5001, IBM, 1973.

D-2

78<

p— ""■■l •-■'■»■-■"' ■"^^■■■■«■■■■wwpp ■—
———

;

MISSION
of

Ram Air Development Center

KADC is the principal AFSC orgtudzMtion charged with
pluming and executing the USAF exploratory and advanced
development programs for information sciences, intelli-
gence, command, control and communications technology,
products and services orient^d to the needs of the USAF.
Primary RADC mlits:.on areas aze communications, electro-
magnetic guidance and control, sur. eil lance of ground
and aerospace objects, intelligence data collection and
handling, information system technology, and electronic
reliability, maintainability and compatibility. RADC
has mission rei.&nsibility as assigned by AFSC for de-
monstration and acquisition of selected tsubsystfjns and
systems in the intelligence, mapping, charting, command,
control and commui"'ications areas.

79<

